China Hot selling 4 Kw Zjp-300 Roots Vacuum Pump for Chemical Industry vacuum pump booster

Product Description

 

Working principle

Roots vacuum pump, also known as mechanical booster pump, is a rotary positive displacement vacuum pump. The schematic structure of the Roots vacuum pump is shown in Figure on the left. There are 2 figure-8 rotors in the pump chamber, which are installed on a pair of shafts in parallel, and are driven by a pair of synchronous gear. The rotor and the rotor, the rotors and the pump chamber maintain a certain gap and do not contact each other, so the friction loss during operation is very small, the friction power consumption is extremely small, and high-speed operation can be achieved.

Figure below shows the internal structure of the Roots vacuum pump. The 2 rotors of the pump are supported in the rolling bearings on the end covers on both sides of the pump chamber, and rely on a pair of adjustable synchronous gears to keep the 2 rotors rotating at high speed. A certain mutual position, and the end face gap between the rotor and the end cover is guaranteed by the special structure of the fixed end (closer to the motor side), so that the pump can only expand to 1 end of the gearbox due to heat during operation.
 

The 4 sets of PTFE piston ring seals in the end caps on both sides can prevent the lubricating oil in the oil tanks on both sides from entering the pump chamber, and the balanced mechanical seal at the outlet shaft can prevent the atmosphere from leaking into the pump chamber.
The cooling method of the pump is usually air cooling. If the pump is used for working in the high pressure range, it is recommended to select a pump with a water cooling structure. The power of the motor is transmitted to the driving shaft through the coupling, and then the driven shaft is driven to rotate by the driving shaft through the synchronous gear. ZJ series Roots vacuum pumps are of horizontal structure, and the pump is directly connected with the motor by means of a coupling. But the pump with special requirements can adopt the V-belt drive structure.
 

ZJP type Roots vacuum pump with bypass valve is a derivative product of ZJ type Roots vacuum pump. The pumping principle is the same as that of ZJ type pump. It also uses a pair of 8-shaped rotors to maintain a certain gap in the pump casing. It rotates to generate suction and exhaust. The difference is that the inlet and exhaust ports of the ZJP type Roots vacuum pump with bypass valve are connected, and a gravity valve is installed vertically on the channel of the 2 (see Figure on the left). When the force on the valve caused by the pressure difference between the intake port and the exhaust port exceeds the weight of the valve itself, it will automatically open. This value of pressure difference which cause the valve to open is the highest differential pressure at which the pump can operate reliably. Therefore, this valve is actually an overload automatic protection valve, and it is also the biggest advantage of ZJP type Roots vacuum pump. Theoretically, the ZJP Roots pump can be started synchronously with the backing pump under atmospheric pressure to pump the system. If the system volume is large, the bypass valve of the ZJP Roots pump is open for a long time, and the pump’s effective pumping speed is small, so it is not economical to start the ZJP type Roots pump at atmospheric pressure for large systems. It is recommended to start the ZJP Roots vacuum pump when the backing pump reaches a certain pressure.

The advantage of the Roots vacuum pump is that it has a higher pumping speed at a lower inlet pressure, but it cannot be used alone. There must be a backing vacuum pump in series, and the pressure in the system is pumped by the backing vacuum pump to an allowable starting pressure of the Roots vacuum pump before it is started(See figure on the left). In general, the Roots vacuum pump is not allowed to work under high pressure difference, otherwise it will be overloaded, overheated and damaged, so the backing vacuum pump must be selected reasonably, and the necessary protective equipment must be installed.
The backing vacuum pump is generally an oil-sealed mechanical pump, but if the ultimate pressure requirement is not high, other forms of rough vacuum pump can be used as the backing pump, especially when the gas containing a large amount of water vapor is extracted, the dry screw vacuum pump is recommended as the backing pump.
 

 

Product Parameters

Model Pumping speed (L/S) Ultimate pressure (Pa) Max. pressure difference (Pa) Motor speed (rpm) Motor Power (kw) Size(mm) Weight (kg)
Inlet Outlet
ZJ-30 30 6xl0-2 8000 2770 0.75 50 40 66
ZJP-30 5xl0-2 75
ZJ-70 70 6xl0-2 6000 2780 1.5 80 50 87
ZJP-70 5xl0-2 100
ZJ-150 150 6xl0-2 6000 2900 3 100 100 198
ZJP-150 5xl0-2 215
ZJ-300 300 6xl0-2 5000 1450 4 150 150 490
ZJP-300 5xl0-2 480
ZJ-600 600 6xl0-2 4000 2900 5.5 150 150 490
ZJP-600 5xl0-2 503
ZJ-1200 1200 6xl0-2 3000 1450 11 300 300 1550
ZJP-1200 5xl0-2 1580
ZJ-2500 2500 5xl0-2 3000 2900 18.5 300 300 1620

 

Remark:
1. The pumping speed refers to the maximum pumping speed measured when the inlet pressure of the Roots vacuum pump is in the range of 67 Pa ~ 2.67 Pa under the condition that the recommended backing pump is used.
2. The ultimate pressure refers to the stable minimum air pressure measured at the inlet of the pump with a vacuum gauge after fully operation without any additional container, the pump port is closed and no intake air is provided under the condition that the recommended backing pump is used.
3. The performances in the above table are obtained under the condition that the recommended backing pump is used. Users can choose different backing vacuum pumps according to different situations, but their main performance data will vary.
 

Pressure diagram

 

 

Dimension

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

You may like

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Nominal Pumping Speed(50Hz): 300 L/S
Ultimate Pressure: 0.05 PA

roots vacuum pump

What Are the Differences Between Dry and Wet Roots Vacuum Pumps?

Dry and wet Roots vacuum pumps are two different types of pumps with distinct operating principles and characteristics. Here’s a detailed explanation of their differences:

1. Operating Principle:

– Dry Roots Vacuum Pump: A dry Roots vacuum pump operates without the use of any lubricating fluid or sealing liquid. It consists of two or more intermeshing lobed rotors that rotate in opposite directions, creating a series of expanding and contracting chambers. As the rotors rotate, gas is trapped in the chambers and carried from the inlet to the outlet, resulting in the generation of a vacuum.

– Wet Roots Vacuum Pump: A wet Roots vacuum pump, also known as a liquid ring pump, uses a liquid, typically water or another compatible liquid, as a sealing and working fluid. The liquid forms a rotating ring inside the pump, creating a seal between the lobes of the rotors. As the rotors turn, the liquid ring traps and carries the gas from the inlet to the outlet, creating a vacuum.

2. Lubrication and Sealing:

– Dry Roots Vacuum Pump: Dry Roots pumps do not require lubrication or sealing fluid. The absence of liquids eliminates the need for maintenance associated with fluid handling, such as oil changes or water management. Dry pumps are often preferred in applications where contamination from lubricants or sealing fluids is a concern, such as in semiconductor manufacturing or pharmaceutical industries.

– Wet Roots Vacuum Pump: Wet Roots pumps rely on a liquid seal for operation, requiring a continuous supply of sealing liquid, typically water. The liquid serves as both a sealant and a coolant for the pump. However, it also necessitates careful management of the liquid, including water supply, disposal, and potential contamination risks. Wet pumps are commonly used in applications where the presence of the sealing liquid is not a concern or can be easily managed.

3. Operation Efficiency:

– Dry Roots Vacuum Pump: Dry pumps are known for their high operational efficiency. They can achieve high pumping speeds and create substantial vacuum levels. Dry pumps are particularly suitable for processes that require quick pump-down times or applications where a deep vacuum is necessary.

– Wet Roots Vacuum Pump: Wet pumps typically have lower pumping speeds compared to dry pumps. While they can achieve moderate vacuum levels, they are not as effective in creating deep vacuums. Wet pumps are often used in processes where the pumping speed requirements are not as demanding, or in applications where the presence of the sealing liquid can provide benefits, such as in handling condensable gases or preventing contamination.

4. Application Suitability:

– Dry Roots Vacuum Pump: Dry pumps are commonly used in a wide range of applications, including semiconductor manufacturing, analytical instruments, vacuum packaging, and industrial processes. Their ability to handle different gases and their high operational efficiency make them suitable for various industries and processes.

– Wet Roots Vacuum Pump: Wet pumps find application in processes where the presence of a sealing liquid is advantageous. They are often used in applications involving the handling of water vapor, condensable gases, or corrosive gases. Wet pumps are utilized in industries such as chemical processing, pharmaceuticals, food processing, and environmental applications.

5. Maintenance and Care:

– Dry Roots Vacuum Pump: Dry pumps generally require less maintenance compared to wet pumps. They do not rely on sealing liquid, reducing the need for fluid changes, disposal, or monitoring of liquid levels. Dry pumps may require periodic maintenance, such as cleaning, inspection, and rotor lubrication, but the maintenance requirements are typically less frequent and less involved.

– Wet Roots Vacuum Pump: Wet pumps require regular maintenance due to the presence of the sealing liquid. Maintenance tasks include monitoring and replenishing the liquid, managing the water supply, and ensuring proper disposal of the used liquid. The sealing liquid may also require filtration or treatment to remove contaminants or prevent scaling or corrosion.

In summary, dry and wet Roots vacuum pumps differ in their operating principles, lubrication and sealing methods, operation efficiency, application suitability, and maintenance requirements. Dry pumps operate without lubrication or sealing fluid, offer high efficiency and are suitable for a wide range of applications. Wet pumps rely on a liquid seal, have lower pumping speeds, are used in applications where the liquid presence is advantageous, and require regular maintenance and care.

roots vacuum pump

Are Roots Vacuum Pumps Used in Industrial Applications?

Yes, Roots vacuum pumps are widely used in various industrial applications. Here’s a detailed explanation of their application in industrial settings:

1. Chemical Processing: Roots vacuum pumps find extensive use in the chemical processing industry. They are employed for processes such as vacuum distillation, solvent recovery, drying, and degassing. Their high pumping speed and ability to handle corrosive gases make them suitable for handling various chemical vapors and byproducts.

2. Pharmaceuticals: In the pharmaceutical industry, Roots vacuum pumps are utilized for applications such as vacuum drying, tablet coating, freeze drying, and vacuum packaging. Their oil-free operation ensures a clean and contaminant-free vacuum environment, which is crucial for pharmaceutical manufacturing processes.

3. Food Processing: Roots vacuum pumps play a significant role in the food processing industry. They are employed for vacuum packaging, vacuum cooling, and vacuum drying of food products. The oil-free operation of Roots vacuum pumps ensures food safety and eliminates the risk of contamination.

4. Environmental Technology: Roots vacuum pumps are utilized in environmental technology applications, including wastewater treatment, biogas processing, and air pollution control. They are employed to extract gases, control emissions, and facilitate the treatment and purification of air and water.

5. Semiconductor Manufacturing: In the semiconductor industry, Roots vacuum pumps are used for processes such as ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. Their high pumping speed and oil-free operation are crucial for maintaining clean vacuum conditions required in semiconductor fabrication.

6. Packaging and Printing: Roots vacuum pumps are employed in packaging and printing applications. They are used for vacuum packaging of products, vacuum forming of packaging materials, and in printing presses for paper handling and ink transfer.

7. Automotive Industry: Roots vacuum pumps find application in the automotive industry for processes such as brake system vacuum assist, crankcase ventilation, and emissions control systems. They help create vacuum conditions required for the operation of various automotive systems.

8. Research and Laboratory: Roots vacuum pumps are utilized in research laboratories and scientific facilities for a wide range of applications. They are used in vacuum ovens, freeze dryers, vacuum filtration, electron microscopy, surface analysis, and other laboratory processes that require controlled vacuum environments.

9. Energy Industry: In the energy sector, Roots vacuum pumps are used for applications such as steam turbine condenser air extraction, transformer drying, and vacuum impregnation of electrical components. They help maintain proper vacuum conditions for efficient and reliable operation of energy systems.

These are just a few examples of the industrial applications where Roots vacuum pumps are commonly used. Their high pumping speed, large gas handling capacity, oil-free operation, reliability, and versatility make them suitable for a wide range of industrial processes that require efficient and reliable vacuum generation.

China Hot selling 4 Kw Zjp-300 Roots Vacuum Pump for Chemical Industry   vacuum pump booster	China Hot selling 4 Kw Zjp-300 Roots Vacuum Pump for Chemical Industry   vacuum pump booster
editor by Dream 2024-05-03