China manufacturer 5 PA 354m3/H 7.5kw Pumping Ethanol Ethyl Alcohol Dry Screw Vacuum Pump manufacturer

Product Description

 

Working principle

The vacuum in dry screw pumps is created through 2 parallel-arranged screw rotors that rotate in opposite directions. These rotors trap the gas coming in through the inlet and deliver it to the gas discharge or pressure side. As the gas is getting compressed, there is no contact between the rotors. This does away with any need for the compression chamber to have any operating fluids or lubrication.
 The lubricant used to lubricate the gears and shaft seal is sealed in the gearbox by the shaft seal. The pump can be cooled either directly by circulating cooling water or by a cooling unit with fan and radiator.
The dry screw vacuum pump adopts a special rotor pitch design, compared with the ordinary rotor pitch design, reduce the energy consumption by about 30%, the temperature rise of the exhaust end is reduced by about 100 ºC, the reliability and stability of the operation of the product is greatly improved, can be suitable for any working conditions of vacuum.
The dry screw pumps can be widely used in solvent recovery, vacuum drying, concentration, crystallization, distillation and other processes in the chemical and pharmaceutical industries, vacuum extrusion and molding in the plastic and rubber industries, vacuum degassing in the metallurgical industry; vacuum degassing and drying in the solar energy, microelectronics, lithium battery and other industries.

Pump body and end caps:  high-strength cast iron.
Pump body and end caps:  high strength cast iron.
Screw rotor:                        ductile cast iron.
Anti-corrosion coating:        corrosion-resistant Hastelloy.
Synchronous gears:            alloy steel.
Radial lip seal:                     imported PTFE mixture or
                                            high-temperature resistant fluorine rubber;
Seal bushings:                    stainless steel surface covered with ceramic.

Flow chart

 

Main features

1. The screw rotor is designed with variable pitch structure, the ultimate vacuum can reach below 1Pa, which can meet all kinds of vacuum processing from atmosphere to high vacuum.
2. Oil free – Adapt to various special working conditions for reliable use.
3. It can operate reliably in the pressure range from atmosphere to several Pa.
4. No friction between moving parts, simple structure, lower operation and maintenance cost.
5. Nitrogen seal and composite seal design is optional, which has the benefit of good reliability, low cost of use, simple maintenance.
6. The rotor is dynamically balanced at high speed and the motor is connected by flange, with high concentricity, low vibration and low noise.
7. Hastelloy anti-corrosion coating is optional for rotor surface, condensable material is not easy to condense in the pump cavity, better corrosion resistance.
8. Compared with oil seal pump, liquid ring pump, there is no waste gas, no waste liquid, no waste oil emission, energy saving and environmental friendly.
It can be used alone or with Roots vacuum pump, air-cooled Roots vacuum pump, molecular vacuum pump, etc. to obtain an oil-free high vacuum system.

The benefit of dry screw vacuum pump compared to liquid ring vacuum pump:

    -Shorten the process cycle and improve production efficiency
    -Reduce water consumption
    -Save energy
    -Improve product quality
    -Can recover solvent by reducing the drying time of products
    -Reduce the cost of wastewater and waste gas treatment

A CASE in a pharmaceutical factory
Process introduction: The penicillin sodium salt solution is fed into the crystallization tank through vacuum. By steam heating, agitator stirring, and adding butanol, the water and butanol in the penicillin solution are pumped into the condenser and condensed into the liquid collecting tank, which can be reused.

Process requirements:
1. The volume of crystallization tank is 7.5m3, and about 4.5m3 penicillin solution is added in the process.
2. Before entering the crystallization tank, the water content of penicillin solution is about 20%, and after crystallization, the water content is required to be about 1%.
3. Vacuum feeding for 2h, then adding butanol for 30min, and then starting to crystallize. The process requires low temperature and fast speed, and the lower the temperature, the better the quality of penicillin. The shorter the reaction time, the better.
4. Vacuum degree requirements: the vacuum degree shall be kept above -0.097MPa. High vacuum degree can reduce the reaction temperature and shorten the reaction time.

The previous vacuum system was 2BE1252+air ejector, which is now transformed into a dry screw vacuum pump. The comparison table of test data is as follows:

vacuum system 2BE1252+ejector DVP 1600 screw pump
Feeding time (h) 2 1.5
Liquid temperature at the beginning of crystallization (ºC) 31.5 16.6
Crystallization time (h) 6 4.5
Time from crystallization to liquid coming out (min) 30 15
Crystal quality average good
Power consumption (KW) 45 37
Water consumption (m3) 26.4 0.72

Economic benefit analysis:

  Cost saving(USD) Remark
Water consumption and treatment 130 Water cost: $0.65/m3, water treatment: 30/m3
Power 15 $0.15/Kwh
Labor, production efficiency 43 Reduced from 6 hour to 4.5 hour
Sum up 188  

Please contact us for a detailed report of economic benefit analysis for your applications! 

 

Configuration
Standard configuration:
Machine base, pump head, coupling, motor, driving screen, air inlet connector, check valve, vacuum gauge, manual filling valve exhaust port muffler.
Optional accessories:
Inlet filter, inlet condenser, solvent flushing device, nitrogen purging device, nitrogen sealing device, exhaust port condenser, solenoid filling valve, cooling water flow switch, temperature sensor, pressure transmitter.

Applications

Leak Detection    Metallurgy  Industrial furnace  Lithium Battery
Chemical, pharmaceutical  Wind tunnel test  Power Industry Vacuum coating
Microelectronics industry Drying Process  Packaging and Printing Solar Energy
Exhaust gas recovery       

Product Parameters

Technical data of Variable pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DVP-180 181 2 4 2900 82 8 50 40 280
DVP-360 354 2 7.5 2900 83 10 50 40 400
DVP-540 535 2 11 2900 83 10 50 40 500
DVP-650 645 1 15 2900 84 20 65 50 600
DVP-800 780 1 22 2900 86 30 100 80 800
DVP-1600 1450 1 37 2900 86 40 125 100 1200

Technical data of Constant pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DSP-140 143 5 4 2900 82 10 50 40 240
DSP-280 278 5 7.5 2900 83 20 50 40 350
DSP-540 521 5 15 2900 83 30 65 50 550
DSP-650 617 5 18.5 2900 84 45 65 50 630
DSP-720 763 5 22 2900 85 55 80 80 780
DSP-1000 912 5 30 2900 86 70 100 80 880

Note: The cooling water volume of the dry screw vacuum pump provided in the table is the amount under 20ºC room temperature water. When the dry screw vacuum pump uses cooling device, the cooling water will be increased, the difference of inlet and outlet water temperature is generally controlled below 7ºC is appropriate.

 

Dimension

 

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Nominal Pumping Speed(50Hz): 354 M3/H
Ultimate Pressure: 5 PA
Nominal Motor Rating(50Hz): 7.5 Kw
Nominal Motor Speed(50Hz): 2900 Rpm

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

What Are the Primary Applications of Vacuum Pumps?

Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Processes:

Vacuum pumps play a vital role in numerous industrial processes, including:

– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.

– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.

– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.

– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.

2. Laboratory and Research:

Vacuum pumps are extensively used in laboratories and research facilities for various applications:

– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.

– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.

– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.

– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.

3. Semiconductor and Electronics Industries:

High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:

– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.

– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.

– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.

4. Medical and Healthcare:

Vacuum pumps have several applications in the medical and healthcare sectors:

– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.

– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.

– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.

5. HVAC and Refrigeration:

Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:

– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.

– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.

6. Power Generation:

Vacuum pumps play a role in power generation applications:

– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.

– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.

These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.

China manufacturer 5 PA 354m3/H 7.5kw Pumping Ethanol Ethyl Alcohol Dry Screw Vacuum Pump   manufacturer China manufacturer 5 PA 354m3/H 7.5kw Pumping Ethanol Ethyl Alcohol Dry Screw Vacuum Pump   manufacturer
editor by CX 2023-12-30