Tag Archives: vacuum pump manufacturer

China manufacturer 24V Diaphragm Silent Vacuum 12V DC Mini Air Pump vacuum pump diy

Product Description

24V Diaphragm Silent Vacuum 12V DC Mini Air Pump

Important Parameters for  12v dc mini air pump:
 

Item name 12v dc mini air pump
Model Number GZ35
Type Oil free diaphragm air Pump 
Medium gas
Max flow rate 35L/M 1.23cfm
Max pressure 3.6bar 52Psi
Energy supply DC
Motor Brushed DC motor
Voltage 12V/24V
Current 13A
Power 1 0 0w
Speed 28 China, HangZhou, ZHangZhoug, China.

ONEREEL is specialized in the design and manufacture Steel Spools, Plastic Spools, Cable roller, Yarn Bobbin,  aluminum spool , Cable Reel Stand,  Sheave Pulley, Cable Conveyor, Hydraulic Puller Tensioner, Gin Poles, Cable Pulling Winch, Safety Tools, Wire Grip, Plastic Parts, and Pump in the industry since 1991. All of our customer spool and wire carrier are engineered and manufactured in our 120,000 square foot state-of-the-art manufacturing plant located in HangZhou, ZHangZhoug.
ONEREEL is specialized in the manufacture of reels for cables and electric wires, iron axles, disc spool for steel cables and various delivery reels. With strong technological capabilities and full series of production equipment. All of our products go through the dynamic and static balance tests. We have passed the quality system certification ISO9001:2000 to ensure the product quality. Following the standards of GB4004-83, JB/T8997, DIN46395 and DIN46397 in productions. 

 

 

Hot Product

Our Customer

 

 

Packaging & Transportation

 

Authoritative Certificate

 

 

FAQ

Q1: Can I get samples?
A: According to spool model and material, we will advise.
Q2: How long is the sample LEAD TIME? 
A: For existing samples, it takes 2-3 days. If no stock, we will advise lead time.
Q3: Can you develop new products?
A: Yes, we have new products developing ability and we are good at developing new mold.
Q4: How much is the freight charge?
A: It depends on spool package volume, if small quantity, volume and urgent goods, 
we may advise FEDEX or other couriers’ charge for your check. 
If volume bigger and by seaway suitable, we provide FOB or CIF price to you.
Q5: What format of the file do you need if I want my own design?
A: We have our own mound workshop and can provide spool or other plastic product developing and injection service.
Q6: How about your service?
A: We have pre-sale service, in-sale service and after-sale service. As “Customer First” is the most important principle of company operation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Forever
Warranty: One Year
Oil or Not: Oil Free
Structure: Jet Flow Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Customization:
Available

|

Vacuum Pump

Disadvantages of using a vacuum pump

A vacuum pump is a device that pulls gas molecules out of a volume and leaves a partial vacuum. Its main function is to create a relative vacuum within a given volume. There are several types of vacuum pumps. Some of them are better suited for specific purposes than others. However, there are some disadvantages to using a vacuum pump.

Application of vacuum pump

Vacuum pumps are invaluable tools in many industrial and scientific processes. They are often used to move gas and other harmful substances and to clear clogged drains. They are also used to support mechanical equipment. For example, they can be mounted on the engine of a motor vehicle or the power hydraulic component of an aircraft. No matter how they are used, they should fit the application.
The principle of a vacuum pump is to draw gas from a sealed chamber to create a partial vacuum. Over the years, vacuum pump technology has evolved from its original beginnings to its current form. Today, there are many types of vacuum pumps, including rotary vane pumps, momentum transfer pumps, and regeneration pumps.
The semiconductor industry is a major user of vacuum pumps. Among other applications, these pumps are commonly used for mounting circuit boards, securing components, blowing and jetting, and pumping. The use of renewable resources has paved the way for widespread semiconductor production, where vacuum pumps are crucial. This manufacturing shift is expected to boost vacuum pump sales across Europe.
Vacuum Pump
The most common types of vacuum pumps are positive displacement and rotary vane pumps. Positive displacement pumps are most effective for rough vacuum applications and are usually paired with momentum transfer pumps. These pumps are used in pharmaceutical, food and medical processes. They are also used in diesel engines, hydraulic brakes and sewage systems.
Positive displacement pumps are used to create low vacuum conditions and create a partial vacuum. These pumps create lower air pressure by enlarging the chamber and allowing gas to flow into the chamber. The air in the cavity is then vented to the atmosphere. Alternatively, momentum transfer pumps, also known as molecular pumps, use high-speed rotating blades to create dense fluids.
Vacuum Pump

Their drawbacks

Vacuum pumps are useful in industrial applications. However, they are not perfect and have some drawbacks. One of them is that their output is limited by the vacuum hose. Vacuum hoses are the bottleneck for vacuum pump performance and evacuation rates. The hose must be kept free of water and organic matter to ensure the highest possible vacuum.
Dry vacuum pumps do not have these problems. They may be more cost-effective but will increase maintenance costs. Water consumption is another disadvantage. When pond water is used, the pump puts additional pressure on the treatment facility. Additionally, contaminants from the gas can become trapped in the water, shortening the life of the pump.
Another disadvantage of vacuum pumps is their limited operating time at low vacuum. Therefore, they are only suitable for extremely high vacuum levels. Diaphragm pumps are another option for industrial applications. They have a sealed fluid chamber that allows a moderate vacuum. They also feature short strokes and a low compression ratio, making them quieter than their reciprocating counterparts.
Vacuum pumps are used in many industrial and scientific processes. They can be used to transport hazardous materials or clear clogged drains. They are also used in rear doors and dump tanks. Certain types of vacuum pumps can cause fluid blockages, which can be harmful. The vacuum pump should also be well suited to the fluid in it to avoid contamination.
Another disadvantage is the lack of proper vacuum system testing equipment. Mechanics often underestimate the importance of a properly functioning vacuum system. Most stores lack the equipment needed for proper troubleshooting. Typically, mechanics rely on the cockpit vacuum gauge to determine if the pump is working properly.
Some vacuum pumps are capable of providing constant vacuum. These pumps are also capable of eliminating odors and spills. However, these advantages are outweighed by some disadvantages of vacuum pumps.

China manufacturer 24V Diaphragm Silent Vacuum 12V DC Mini Air Pump   vacuum pump diyChina manufacturer 24V Diaphragm Silent Vacuum 12V DC Mini Air Pump   vacuum pump diy
editor by Dream 2024-04-17

China manufacturer 2xz Series Double Stage Liquid Ring Vacuum Pump Rotary Vane Vacuum Pump with Great quality

Product Description

Product Parameters

 

Model 2xz-0.5 2xz-1 2xz-2 2xz-4
Pumping Speed L/S(m³/h) 0.5(1.8) 1(3.6) 2(7.2) 4(14.4)
Extreme Pressure(Pa) Partial Pressure ≤6×10-2 ≤6×10-2 ≤6×10-2 ≤6×10-2
Full Pressure ≤1.33 ≤1.33 ≤1.33 ≤1.33
Rotating Speed r/min(50/60Hz) 1400/1700 1400/1700 1400/1700 1400
Voltage(v) 220 220/380 220/380 220/380
Motor Power(kw) 0.18 0.25 0.37 0.55
Inlet Diameter (Outer Diameter)mm G3/8(∅12) G3/8(∅12) G3/4(∅12) G3/4(∅12)
KF-16 KF-16 KF-25 KF-25
Noise(dBA) 62 62 63 64
Oil volume (L) 0.6 0.7 1 1.1
Size(mm) 538*215*360 538*215*360 580*215*367 580*215*367
Gross/Net Weight(kg) 17/16 18/17 22/20 25/22

Model 2xz-2B 2xz-4B 2xz-6B 2xz-8B 2xz-15B 2xz-25B
Pumping Speed L/S(m³/h) 2(7.2) 4(14.4) 6(21.6) 8(28.8) 15(54) 25(90)
Extreme Pressure(Pa) Partial Pressure ≤4×10-2 ≤4×10-2 ≤4×10-2 ≤4×10-2 ≤4×10-2 ≤4×10-2
Full Pressure ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
Rotating Speed r/min(50/60Hz) 1400/1700 1400/1700 1400/1700 1400/1700 1400/1700 1400/1700
Voltage(v) 220/380 220/380 220/380 380 380 380
Motor Power(kw) 0.37 0.55 0.75 1.5 1.5 2.2
Inlet Diameter (Outer Diameter)mm G3/4 G3/4 ∅30 ∅40 ∅40 ∅50
KF-25 KF-25 KF-25 KF-40 KF-40 KF-50
Noise(dBA) 65 66 68 70 72 74
Oil volume (L) 0.8 0.95 1-1.2 2.3-2.5 2.8-3.3 5.5-6.5
Size(mm) 580*215*367 580*215*367 670*240*320 720*270*390 770*270*390 900*320*550
Gross/Net Weight(kg) 22/20 25/22 46/40 68/52 75/62 90/70

Product Description

Rotary Vane Vacuum Pump is the basic equipment used to remove gas from sealed containers.  It can be used alone, also can be used for booster pump, diffusion pump, molecular pump before the pump, maintenance pump, titanium pump pre-pumping pump,  It can be used for vacuum drying, CHINAMFG drying, vacuum degassing, vacuum packaging, vacuum adsorption, vacuum forming, coating, food packaging, printing, sputtering, vacuum casting, instruments, instruments, refrigerators, air conditioning lines and laboratories and other vacuum operations and supporting use.

· Due to the thorough low noise design and precision machining, so as to achieve low noise
· Specially designed gas valve is prepared to prevent the pump oil from mixing with water and prolong the service time of the pump oil
· Adopt similar product design, small size, light weight, low noise, easy to start
· Equipped with vacuum drying oven, freeze-drying machine, printing machinery
· It can be equipped with small-caliber adapter, KF interface and flange interface

Application
· Rotary Vane Vacuum Pump corollary use with freezer dryer to reach vacuum state, it’s an essential corollary equipment in medicine CHINAMFG drying, biology, food industry and agricultural products deep processing
· Rotary Vane Vacuum Pump corollary use with vacuum drying oven for maintaining vacuum state inside the oven, they mainly applies in powder drying and baking in vacuum condition

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 1 Year
Oil or Not: Oil
Structure: Multistage Pump
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China manufacturer 2xz Series Double Stage Liquid Ring Vacuum Pump Rotary Vane Vacuum Pump   with Great quality China manufacturer 2xz Series Double Stage Liquid Ring Vacuum Pump Rotary Vane Vacuum Pump   with Great quality
editor by Dream 2024-04-17

China manufacturer Monoblock CHINAMFG Liquid Ring Vacuum Pump Cast Iron Stainless Steel Circulation Vacuum Pump vacuum pump engine

Product Description

Product Description

2BE liquid ring vacuum pump is CHINAMFG liquid ring vacuum pump and is used to transport gases and vapors, predominantly for intake pressures below atmospheric pressure. Our 2BE liquid ring vacuum pump is available in 20 models, and is ATEX Certified. It offered It offered Suction capacity from 150 to 38000m³/h. It has reliable operation and economic power consumption. We also have 2BE pump with Partition wall in pump casing special for paper industry.

We offer same outline dimensions for bolt-on replacement and equivalent performances with original 2BV liquid ring vacuum pump.

ITEM

UNIT

Quantity

Supply Ability

per month

2,000set

2BE series water ring vacuum pumps and compressors are the products with high efficiency and economical power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.  These series products adopt CHINAMFG and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economical power.  Comparing with the SK, 2SK, SZ series water ring vacuum pumps used widely in our country at present, the 2BE series products are the ideal replacements of them for high vacuum, low power, and running reliability

Product Series

Company Profile

 

Certifications

 

Packaging & Shipping

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Samples:
US$ 10000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China manufacturer Monoblock CHINAMFG Liquid Ring Vacuum Pump Cast Iron Stainless Steel Circulation Vacuum Pump   vacuum pump engine	China manufacturer Monoblock CHINAMFG Liquid Ring Vacuum Pump Cast Iron Stainless Steel Circulation Vacuum Pump   vacuum pump engine
editor by CX 2024-04-17

China manufacturer Infitek Egative Pressure Laboratory Medical Chemical Diaphragm Vacuum Pump Vacp-D401 with high quality

Product Description

Infitek egative pressure laboratory medical Chemical Diaphragm Vacuum Pump VACP-D401

Features

 

VACP-D401 diaphragm vacuum pump provides negative pressure condition for processes of evaporation, distillation, crystallization, drying, sublimation, reduced pressure filtration etc. It can be used to extract a variety of highly toxic, flammable and explosive, strong acid, and alkali sample.

  1. A substitute for water circulating vacuum pump and rotary vane vacuum pump.
  2. No need of any working medium. No friction between working parts.
  3. Vacuum level can be adjusted according to experiment requirements.
  4. All parts that contacting gases are made of PTFE + FV rubber with chemical resistance.
  5. Valve plate adopts imported materials.
  6. Motor is supplied by famous manufacturer.
  7. With reasonable design, transmission runs smoothly.
  8. With small volume and light weight, easy to move. Saving space.
VACP-D401
Ultimate Vacuum (MPa) 0.095 Inlet Diameter (mm) Φ10×Φ7
Extreme pressure (mbar) 50 Power Supply 220-240V~, 50Hz
Pumping Speed (L/min) 45 Dimensions (mm) 195W×440D×310H
Motor Power (W) 300 Net Weight (kg) 23

Packaging & Shipping

 

Certifications

About us

FAQ

Q: How about quality of the goods?

A:

l All the running products comply with CE standards.

l Independent quality inspection team, conducting multiple inspections and random inspections from parts supply to product dispatch.

l Well-known third-party testing service available, such as SGS, BV, and TUV, etc.

 

Q: What are your pre- and after-sales services?

A:

l Timely reply to pre-sales enquiries

l Real-time update of manufacturing and shipment status

l Contracted third-party maintenance company in over 60 countries

Assured availability of parts supply for 10 years at least

 

Q: Is OEM service available.

A: Most of the running products are available for OEM customization, including logo, package and function, if attainable, customization.

 

Q: How long is the lead time:

A: Generally, the lead time for most stocked products is about 7~15 days, vary by models and production schedule. For those non-stocked products, the manufacturing lead time is around 20 days.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support & Free Spare Parts
Warranty: 2 Year
Structure: Diaphragm Vacuum Pump
Vacuum Degree: High Vacuum
Working Conditions: Dry
Ultimate Vacuum (MPa): 0.095
Customization:
Available

|

Vacuum Pump

Select vacuum pump

When choosing a vacuum pump, there are several things to consider. Diaphragm, scroll and Roots pumps are available. These pumps work similarly to each other, but they have some notable differences. Learn more about each type to make the right decision for your needs.

Diaphragm vacuum pump

Diaphragm vacuum pumps are very reliable and efficient for moving liquids. They are also compact and easy to handle. They can be used in a variety of applications, from laboratory workstations to large vacuum ovens. Diaphragm vacuum pumps are available worldwide. Advantages of this pump include low noise and corrosion resistance.
Diaphragm vacuum pumps work by increasing the chamber volume and decreasing the pressure. The diaphragm draws fluid into the chamber, diverting it back when it returns to its starting position. This hermetic seal allows them to transfer fluids without the need for lubricants.
Diaphragm vacuum pumps are the most efficient cleaning option and are easy to maintain. They do not produce oil, waste water or particles, which are common problems with other types of pumps. In addition, diaphragm pumps are low maintenance and have no sliding parts in the air path.
The simple design of diaphragm vacuum pumps makes them popular in laboratories. Oil-free construction makes it an economical option and is available in a variety of styles. They also have a variety of optional features. Diaphragm pumps are also chemically resistant, making them ideal for chemical laboratories.
Diaphragm vacuum pumps have speeds ranging from a few microns per minute (m3/h) to several m3/h. Some models have variable speed motors that reduce pumping speed when not in use. This feature extends their service interval. Standard diaphragm pumps are also popular in pharmaceutical and medical procedures. In addition, they are used in vacuum mattresses and cushions.

Scroll vacuum pump

Dry scroll vacuum pumps have many advantages over other types of vacuum pumps. Its compact design makes it ideal for a variety of general-purpose vacuum applications. They also offer oil-free operation. Additionally, many of these pumps feature chemically resistant PTFE components for increased chemical resistance.
These pumps are used in a variety of environments including laboratories, OEM equipment, R&D and medical applications. The single-stage design of these pumps makes them versatile and cost-effective. They are also suitable for a range of high field and radiation environments. Scroll pumps are also available in electronics-free and three-phase versions.
Oil-free scroll vacuum pumps are an excellent choice for those who don’t want the noise and mess associated with reciprocating pumps. Oil-free scroll pumps contain two helical scrolls interwoven in a helical motion that creates strong suction and directs steam to the exhaust. Because they do not require oil, they require minimal maintenance and downtime.
Oil-free scroll vacuum pumps are suitable for low to medium vacuum systems. Their durability and flexibility also make them suitable for many other applications. While they are often associated with dry vacuum pumps, they can also be used in chemical and analytical applications. Oil-free scroll pumps are also considered environmentally friendly.
The HiScroll range consists of three dry-sealed scroll pumps with nominal pumping speeds ranging from 6 to 20 m3/h. They feature advanced cutting edge sealing technology and reduce power requirements. They are also compact and noiseless, making them an excellent choice in quiet work environments.
Vacuum Pump

Roots Pump

Roots vacuum pumps are an important part of vacuum systems in various industries. These pumps are used to generate high vacuum in a variety of applications including degassing, rolling and vacuum metallurgy. They are also used in vacuum distillation, concentration and drying in the pharmaceutical, food and chemical industries.
These pumps are made of non-magnetized rotors that sit in the vacuum of the drive shaft. In addition, the stator coils are fan-cooled, eliminating the need for shaft seals. These pumps are typically used in applications involving high purity and toxic gases.
The theoretical pumping speed of a Roots pump depends on the gas type and outlet pressure. Depending on the size and power of the pump, it can range from 200 cubic meters per hour (m3/h) to several thousand cubic meters per hour. Typical Roots pumps have pumping speeds between 10 and 75.
Roots pumps are designed to reach high pressures in a relatively short period of time. This enables them to significantly reduce vacation time. Their compact design also makes them quiet. They also require no oil or moving parts, making them ideal for a variety of applications. However, they also have some limitations, including relatively high service costs and poor pumping performance at atmospheric pressure.
The RUVAC Roots pump is a versatile and efficient vacuum pump. It is based on the dry compressor roots principle already used in many vacuum technologies. This principle has been used in many different applications, including vacuum furnaces and vacuum coating. The combination of the Roots pump and the backing vacuum pump will increase the pumping speed at low pressure and expand the working range of the backing vacuum pump.

Electric vacuum pump

Electric vacuum pumps have many applications. They help move waste and debris in various processes and also help power instruments. These pumps are used in the automotive, scientific and medical industries. However, there are some important factors to consider before buying. In this article, we will discuss some important factors to consider.
First, you should consider the base pressure of the pump. Some pumps can reach a base pressure of 1 mbar when new, while others can reach a base pressure of 1 x 10-5 mbar. The higher the base pressure, the more energy is required to reverse atmospheric pressure.
Another important consideration is noise. Electric vacuum pumps need to be quiet. Especially for hybrid and electric vehicles, low noise is very important. Therefore, electric vacuum pumps with low noise characteristics have been developed. The pump’s integrated motor was developed in-house to avoid expensive vibration decoupling elements. Therefore, it exhibits high structure-borne noise decoupling as well as low airborne noise emissions. This makes the electric vacuum pump suitable for mounting on body components without disturbing vibrations.
Depending on the type of application, electric vacuum pumps can be used for workholding, clamping or clamping applications. They can also be used for solid material transfer. The electric pump with 20 gallon tank has a maximum vacuum of 26″ Hg. It also houses a 1,200 square inch sealed vacuum suction cup. It also has a coolant trap.
The automotive electric vacuum pump market was estimated at USD 1.11 billion in 2018. Electric vacuum pumps are used in automobiles for many different applications. These pumps provide vacuum assistance to a variety of automotive systems, including brake boosters, headlight doors, heaters, and air conditioning systems. They are also quieter than traditional piston pumps.
Vacuum Pump

Cryogenic vacuum pump

Cryogenic vacuum pumps are used in many different processes, including vacuum distillation, electron microscopy, and vacuum ovens. These pumps feature a thin-walled shaft and housing to minimize heat loss from the motor. They are also capable of high speed operation. High-speed bearings increase the hydraulic efficiency of the pump while minimizing heating of the process fluid. Cryopumps also come in the form of laboratory dewars and evaporators.
A key feature of a cryopump is its ability to span a wide pressure range. Typically, such pumps have a maximum pressure of 12 Torr and a minimum pressure of 0.8 Torr. However, some cryopumps are capable of pumping at higher pressures than this. This feature extends pump life and limits gas loading.
Before using a cryopump, you need to make sure the system is cold and the valve is closed. The gas in the chamber will then start to condense on the cold array of the pump. This condensation is the result of the latent heat released by the gas.
Cryogenic vacuum pumps are usually equipped with a Polycold P Cryocooler, which prevents the backflow of water through the pump. Such coolers are especially useful in load lock systems. As for its functionality, SHI Cryogenics Group offers two different styles of cryopumps. These systems are ideal for demanding flat panel, R&D and coating applications. They are available in sizes up to 20 inches and can be configured for automatic regeneration or standard settings.
The cryogenic vacuum pump market is segmented by application and geography. The report identifies major global companies, their shares and trends. It also includes product introductions and sales by region.

China manufacturer Infitek Egative Pressure Laboratory Medical Chemical Diaphragm Vacuum Pump Vacp-D401   with high quality China manufacturer Infitek Egative Pressure Laboratory Medical Chemical Diaphragm Vacuum Pump Vacp-D401   with high quality
editor by CX 2024-04-16

China supplier High-Capacity Multi-Function Stainless Steel Pump Head Vertical Circulating Water Vacuum Pump manufacturer

Product Description

High-Capacity Multi-Function Stainless Steel Pump Head Vertical Circulating Water Vacuum Pump

Product Description

       This product is a new type of multi-purpose vacuum pump, which uses circulating water as working fluid and uses jet to produce negative pressure principle. It can provide vacuum condition for chemical laboratory and circulating cooling water for reactor. It is widely used in evaporation, distillation, crystallization, filtration, decompression, sublimation and other operations. It is an ideal equipment for laboratories in Colleges and universities, medicine and chemical industry, food processing and other fields.

 

Technical Parameters :

Product name

Circulating water vacuum pump (vertical)

Product model

SHZ-CD

SHZ-95B

SHZ-C

SHZ-2000

Power

370W

370W

370W

370Wx2

Power Supply

220V  50HZ

Flow

60-80L/min

Lift

12m

texture of material

stainless steel

anticorrosive

stainless steel

stainless steel

Maximum vacuum

0.098mpa

Single suction

10L/min

Quantity of suction heads

5

5

5

10

Volume of water tank

55L

55L

55L

65L

Dimensions

440x340x830mm

440x340x860mm

Weight

37 kg

37 kg

35 kg

35 kg

 

 

Related Products

 

Company Profile

 

Packaging & Shipping

FAQ

Where’s your company? How do I get to your company?

Our company is located in Building A3, HangZhou Founder Industrial Park, No. 78 Luntou Road, Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province, China. You can fly to HangZhou Xihu (West Lake) Dis. International Airport, and then we will arrange a special person to pick you up.

 

Are you a what type company?

We are an innovative enterprise integrating processing, manufacturing and trade.

 

What kind of service does it offer?

We can provide customers with common laboratory equipment and equipment and pharmaceutical, chemical industry applications of reactor tanks and supporting temperature control equipment.

 

How strong is your company?

Our company was founded in 2006, has its own leading brand in the country, our products sell well in China, covering most of the laboratories, deeply loved and praised by users. We have many cooperative production bases in different cities in China, concentrating the best production resources and providing the best quality products. We design a wide range of products, we have professional technical engineers, can provide customers with solution design, product customization services.

 

How about the quality of your products?

Product quality is not only a customer concern, but also our most important issue! We even the importance of product quality, the company has set up a strict testing system, only after strict performance testing of products, issued testing certificates can be allowed to leave the factory, you can rest assured to buy.

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Circulating Water Vacuum Pump
Exhauster Method:
Vacuum Degree: 0.98MPa
Customization:
Available

|

Vacuum Pump

Disadvantages of using a vacuum pump

A vacuum pump is a device that pulls gas molecules out of a volume and leaves a partial vacuum. Its main function is to create a relative vacuum within a given volume. There are several types of vacuum pumps. Some of them are better suited for specific purposes than others. However, there are some disadvantages to using a vacuum pump.

Application of vacuum pump

Vacuum pumps are invaluable tools in many industrial and scientific processes. They are often used to move gas and other harmful substances and to clear clogged drains. They are also used to support mechanical equipment. For example, they can be mounted on the engine of a motor vehicle or the power hydraulic component of an aircraft. No matter how they are used, they should fit the application.
The principle of a vacuum pump is to draw gas from a sealed chamber to create a partial vacuum. Over the years, vacuum pump technology has evolved from its original beginnings to its current form. Today, there are many types of vacuum pumps, including rotary vane pumps, momentum transfer pumps, and regeneration pumps.
The semiconductor industry is a major user of vacuum pumps. Among other applications, these pumps are commonly used for mounting circuit boards, securing components, blowing and jetting, and pumping. The use of renewable resources has paved the way for widespread semiconductor production, where vacuum pumps are crucial. This manufacturing shift is expected to boost vacuum pump sales across Europe.
Vacuum Pump
The most common types of vacuum pumps are positive displacement and rotary vane pumps. Positive displacement pumps are most effective for rough vacuum applications and are usually paired with momentum transfer pumps. These pumps are used in pharmaceutical, food and medical processes. They are also used in diesel engines, hydraulic brakes and sewage systems.
Positive displacement pumps are used to create low vacuum conditions and create a partial vacuum. These pumps create lower air pressure by enlarging the chamber and allowing gas to flow into the chamber. The air in the cavity is then vented to the atmosphere. Alternatively, momentum transfer pumps, also known as molecular pumps, use high-speed rotating blades to create dense fluids.
Vacuum Pump

Their drawbacks

Vacuum pumps are useful in industrial applications. However, they are not perfect and have some drawbacks. One of them is that their output is limited by the vacuum hose. Vacuum hoses are the bottleneck for vacuum pump performance and evacuation rates. The hose must be kept free of water and organic matter to ensure the highest possible vacuum.
Dry vacuum pumps do not have these problems. They may be more cost-effective but will increase maintenance costs. Water consumption is another disadvantage. When pond water is used, the pump puts additional pressure on the treatment facility. Additionally, contaminants from the gas can become trapped in the water, shortening the life of the pump.
Another disadvantage of vacuum pumps is their limited operating time at low vacuum. Therefore, they are only suitable for extremely high vacuum levels. Diaphragm pumps are another option for industrial applications. They have a sealed fluid chamber that allows a moderate vacuum. They also feature short strokes and a low compression ratio, making them quieter than their reciprocating counterparts.
Vacuum pumps are used in many industrial and scientific processes. They can be used to transport hazardous materials or clear clogged drains. They are also used in rear doors and dump tanks. Certain types of vacuum pumps can cause fluid blockages, which can be harmful. The vacuum pump should also be well suited to the fluid in it to avoid contamination.
Another disadvantage is the lack of proper vacuum system testing equipment. Mechanics often underestimate the importance of a properly functioning vacuum system. Most stores lack the equipment needed for proper troubleshooting. Typically, mechanics rely on the cockpit vacuum gauge to determine if the pump is working properly.
Some vacuum pumps are capable of providing constant vacuum. These pumps are also capable of eliminating odors and spills. However, these advantages are outweighed by some disadvantages of vacuum pumps.

China supplier High-Capacity Multi-Function Stainless Steel Pump Head Vertical Circulating Water Vacuum Pump   manufacturer China supplier High-Capacity Multi-Function Stainless Steel Pump Head Vertical Circulating Water Vacuum Pump   manufacturer
editor by CX 2024-04-16

China Standard 2BV Series Light Portable Small Water Ring Vacuum Pump manufacturer

Product Description

2BV series light portable small water ring vacuum pump

2BV Vacuum Pump Introduction:

1. 2BV new type high quality high performance high limited vacuum liquid ring air vacuum pump water ring vacuum pump used in sucking gas and water vapor, inspiratory pressure can reach 33mbar absolute pressure.
2. When the water ring vacuum pumps in inspiratory pressure limits of working liquid vacuum (saturated steam pressure) for a long time, should work under cavitation protection tube connection to the pump to protect.
3. The standard seals are all used the mechanical seals. Material has FPM and PTFE
4. The pump have the cavitation protection port. When they work under the condition near the limited vacuum, the cavitation protect port opens (or connects with the separator)to get rid of the screaming to protect the pump.
5. Aluminum bronze impeller is of high intensity and wearing well. The erosive-proof capacity of the pump can be improved by using it. If the parts where the liquid flows are made of the stainless steel, the pumps can be used under the more rigorous condition.
6. Widely used in food industry, textile industry, medicine industry, chemical industry or other industries.

2BV Vacuum Pump Data Sheet

2BV True Photo

Factory Introduction

Our company HangZhou CHINAMFG PUMP INDUSTRY Co., Ltd specialized in pumps more than 20 years. 
We have more than 20000 square CHINAMFG modern factory and 100+ professional engineers,workers. 
Our business scope have covered all kinds of pumps, like centrifugal pump, submersible pump, 
vacuum pump, sewage pump, chemical pump, screw pump, diaphragm pump, fire pump, water supply 
equipment and so on. Also welcome custom-made and OEM service. Our pumps are popular in 
Southeast Asia, Middle Asia, Africa and Europe.

Every customer mostly care about products quality, our group have passed ISO9001: 2008 quality 
control system. Double testing is our quality policy. 12 months warranty time and necessary spare 
parts are welcomed by our customers. For international trade, third party inspection is supported.

FAQ

Q1:Are you manufacturer or trading company?
A:We are professional pump manufacturer and export pumps by ourselves.

Q2:What’s your business scope?
A:We manufacture all kinds of centrifugal pump,sewage pump,vacuum pump,chemical pump,pump equipment and so on.

Q3:What’s information for enquiry?
A:Basic information:flow,head and power

Q4:What’s your payment terms?
A:Common payment terms:T/T,30% deposit,balance payment before shipment.
Western Union,Paypal

Q5:Terms of Shipment?
A:EXW,FOB,CIF,CPT.By sea,air or express.

Q6:How about warranty and after-service?
A:12 months warranty time after receiving days,not include quick-wear parts and default phase.We promise 24 hours action for your problem.
And send parts by air or express for maintain. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: One Year
Oil or Not: Lubricated Oil
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China Standard 2BV Series Light Portable Small Water Ring Vacuum Pump   manufacturer China Standard 2BV Series Light Portable Small Water Ring Vacuum Pump   manufacturer
editor by CX 2024-04-15

China manufacturer Easy to Operate Laboratory Desktop Small Vacuum Pump with high quality

Product Description

Easy to Operate Laboratory Desktop Small Vacuum Pump
 

Features:

1. DP-01 diaphragm vacuum pump adopts oil-free lubrication design, and the compressed air is more pure. Reasonable structure, small size, light weight and low working noise.
2. The piston adopts corrosion-resistant polymer material, which has good sealing performance and chemical corrosion resistance.
3. It is suitable for a variety of instruments, and it can be used in vacuum filtration devices, vacuum filtration bottles, multi-purpose solvent filters, multi-unit filters, CHINAMFG phase extractors, vacuum drying and other experimental equipment.
Parameters:
 

Model Vacuum Pressure  Flow Power Power Supply Net Weight
DP-01 0.08Mpa 10L/Min 20W 220V/50Hz 3.5kg

Our Warehouse:

Our Service:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001:2000, CE
Rated Current: 1-4A
Voltage: 220V
Material: Stainless Steel
Power: Electric
Valve Body Type: Diaphragm
Customization:
Available

|

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China manufacturer Easy to Operate Laboratory Desktop Small Vacuum Pump   with high quality China manufacturer Easy to Operate Laboratory Desktop Small Vacuum Pump   with high quality
editor by CX 2024-04-15

China Good quality Vacuum Pump and Roots Pump Spare Parts for Oil Filtration Machine and Vacuum Pumping System manufacturer

Product Description

Various famous brands in domestic and at abroad of rotary vane vacuum pumps and/or booster roots pumps with their motors are chosen to install on our oil filtration machines, so as to keep a stable vacuum pumping works and the whole machine’s reliable operation.
These pumps and motors are also available for sale to the buyers who are using our oil filtration machines as spare parts.
And these are also supplied to customers as spare parts of Vacuum Pumping System.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Rotary Vacuum Pump and Booster Roots Pump
Exhauster Method: Entrapment Vacuum Pump
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

roots vacuum pump

What Are the Differences Between Dry and Wet Roots Vacuum Pumps?

Dry and wet Roots vacuum pumps are two different types of pumps with distinct operating principles and characteristics. Here’s a detailed explanation of their differences:

1. Operating Principle:

– Dry Roots Vacuum Pump: A dry Roots vacuum pump operates without the use of any lubricating fluid or sealing liquid. It consists of two or more intermeshing lobed rotors that rotate in opposite directions, creating a series of expanding and contracting chambers. As the rotors rotate, gas is trapped in the chambers and carried from the inlet to the outlet, resulting in the generation of a vacuum.

– Wet Roots Vacuum Pump: A wet Roots vacuum pump, also known as a liquid ring pump, uses a liquid, typically water or another compatible liquid, as a sealing and working fluid. The liquid forms a rotating ring inside the pump, creating a seal between the lobes of the rotors. As the rotors turn, the liquid ring traps and carries the gas from the inlet to the outlet, creating a vacuum.

2. Lubrication and Sealing:

– Dry Roots Vacuum Pump: Dry Roots pumps do not require lubrication or sealing fluid. The absence of liquids eliminates the need for maintenance associated with fluid handling, such as oil changes or water management. Dry pumps are often preferred in applications where contamination from lubricants or sealing fluids is a concern, such as in semiconductor manufacturing or pharmaceutical industries.

– Wet Roots Vacuum Pump: Wet Roots pumps rely on a liquid seal for operation, requiring a continuous supply of sealing liquid, typically water. The liquid serves as both a sealant and a coolant for the pump. However, it also necessitates careful management of the liquid, including water supply, disposal, and potential contamination risks. Wet pumps are commonly used in applications where the presence of the sealing liquid is not a concern or can be easily managed.

3. Operation Efficiency:

– Dry Roots Vacuum Pump: Dry pumps are known for their high operational efficiency. They can achieve high pumping speeds and create substantial vacuum levels. Dry pumps are particularly suitable for processes that require quick pump-down times or applications where a deep vacuum is necessary.

– Wet Roots Vacuum Pump: Wet pumps typically have lower pumping speeds compared to dry pumps. While they can achieve moderate vacuum levels, they are not as effective in creating deep vacuums. Wet pumps are often used in processes where the pumping speed requirements are not as demanding, or in applications where the presence of the sealing liquid can provide benefits, such as in handling condensable gases or preventing contamination.

4. Application Suitability:

– Dry Roots Vacuum Pump: Dry pumps are commonly used in a wide range of applications, including semiconductor manufacturing, analytical instruments, vacuum packaging, and industrial processes. Their ability to handle different gases and their high operational efficiency make them suitable for various industries and processes.

– Wet Roots Vacuum Pump: Wet pumps find application in processes where the presence of a sealing liquid is advantageous. They are often used in applications involving the handling of water vapor, condensable gases, or corrosive gases. Wet pumps are utilized in industries such as chemical processing, pharmaceuticals, food processing, and environmental applications.

5. Maintenance and Care:

– Dry Roots Vacuum Pump: Dry pumps generally require less maintenance compared to wet pumps. They do not rely on sealing liquid, reducing the need for fluid changes, disposal, or monitoring of liquid levels. Dry pumps may require periodic maintenance, such as cleaning, inspection, and rotor lubrication, but the maintenance requirements are typically less frequent and less involved.

– Wet Roots Vacuum Pump: Wet pumps require regular maintenance due to the presence of the sealing liquid. Maintenance tasks include monitoring and replenishing the liquid, managing the water supply, and ensuring proper disposal of the used liquid. The sealing liquid may also require filtration or treatment to remove contaminants or prevent scaling or corrosion.

In summary, dry and wet Roots vacuum pumps differ in their operating principles, lubrication and sealing methods, operation efficiency, application suitability, and maintenance requirements. Dry pumps operate without lubrication or sealing fluid, offer high efficiency and are suitable for a wide range of applications. Wet pumps rely on a liquid seal, have lower pumping speeds, are used in applications where the liquid presence is advantageous, and require regular maintenance and care.

roots vacuum pump

Are Roots Vacuum Pumps Used in Industrial Applications?

Yes, Roots vacuum pumps are widely used in various industrial applications. Here’s a detailed explanation of their application in industrial settings:

1. Chemical Processing: Roots vacuum pumps find extensive use in the chemical processing industry. They are employed for processes such as vacuum distillation, solvent recovery, drying, and degassing. Their high pumping speed and ability to handle corrosive gases make them suitable for handling various chemical vapors and byproducts.

2. Pharmaceuticals: In the pharmaceutical industry, Roots vacuum pumps are utilized for applications such as vacuum drying, tablet coating, freeze drying, and vacuum packaging. Their oil-free operation ensures a clean and contaminant-free vacuum environment, which is crucial for pharmaceutical manufacturing processes.

3. Food Processing: Roots vacuum pumps play a significant role in the food processing industry. They are employed for vacuum packaging, vacuum cooling, and vacuum drying of food products. The oil-free operation of Roots vacuum pumps ensures food safety and eliminates the risk of contamination.

4. Environmental Technology: Roots vacuum pumps are utilized in environmental technology applications, including wastewater treatment, biogas processing, and air pollution control. They are employed to extract gases, control emissions, and facilitate the treatment and purification of air and water.

5. Semiconductor Manufacturing: In the semiconductor industry, Roots vacuum pumps are used for processes such as ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. Their high pumping speed and oil-free operation are crucial for maintaining clean vacuum conditions required in semiconductor fabrication.

6. Packaging and Printing: Roots vacuum pumps are employed in packaging and printing applications. They are used for vacuum packaging of products, vacuum forming of packaging materials, and in printing presses for paper handling and ink transfer.

7. Automotive Industry: Roots vacuum pumps find application in the automotive industry for processes such as brake system vacuum assist, crankcase ventilation, and emissions control systems. They help create vacuum conditions required for the operation of various automotive systems.

8. Research and Laboratory: Roots vacuum pumps are utilized in research laboratories and scientific facilities for a wide range of applications. They are used in vacuum ovens, freeze dryers, vacuum filtration, electron microscopy, surface analysis, and other laboratory processes that require controlled vacuum environments.

9. Energy Industry: In the energy sector, Roots vacuum pumps are used for applications such as steam turbine condenser air extraction, transformer drying, and vacuum impregnation of electrical components. They help maintain proper vacuum conditions for efficient and reliable operation of energy systems.

These are just a few examples of the industrial applications where Roots vacuum pumps are commonly used. Their high pumping speed, large gas handling capacity, oil-free operation, reliability, and versatility make them suitable for a wide range of industrial processes that require efficient and reliable vacuum generation.

China Good quality Vacuum Pump and Roots Pump Spare Parts for Oil Filtration Machine and Vacuum Pumping System   manufacturer China Good quality Vacuum Pump and Roots Pump Spare Parts for Oil Filtration Machine and Vacuum Pumping System   manufacturer
editor by CX 2024-04-13

China manufacturer Horizontal 1 Year Belloni Wooden Box 800*500*500mm China Vacuum Pump vacuum pump brakes

Product Description

                                                                  

Product Description

Product Parameters

Company Profile

 

Belloni(ZheJiang )Pump Manufacturing Co.,Ltd.is located at No.18,Xihu (West Lake) Dis.Jinqiuzhu Road,Shengci Town,HangZhou City,the lower reaches of the Yangtze River.The main products are:CQB magnetic pump,FJX forced circulation pump,ZB horizontalself-priming pump,fluorine-lined centrifugal pump,chemical desulfurization pump,horizontal centrifugal pump,underarm pump,split pump,rotor pump,BLN acid-resistantand wear-resistant pump ,CZ chemical centrifugal pump,UHB wear-resistant andcorrosion-resistant CHINAMFG pump,WFB sealless self-control self-priming pump,ZApetrochemical process pump,high-pressure oil pump,vertical pipeline pump,screwpump.Belloni Pump currently has 59 employees,including 12 professional and technicalpersonnel,6 inspection personnel,more than 100 sets of various gold cutting equipment,computer CAD-aided design,advanced detection and measurement devices,large-scale special processing equipment and Large lifting equipment,etc.The company hasthe production conditions for the whole process of design,casting,machining,assembly,and testing.At present,the company’s products have been widely used in petrochemical,agricultural irrigation and drainage,industrial water supply and drainage,municipalconstruction,sewage treatment,environmental landscape engineering and otherindustries.The company provides solutions for the safe transportation of industrial fluidsin the world.It is a scientific and technological enterprise integrating chemical pumpdesign,research and development,manufacturing,sales and service.The company’sbusiness philosophy of safety first,quality first,and innovation as the source has beenrecognized by various users in domestic and foreign markets;the company adheres tothe core value of “let customers worry-free”,Belloni pump industry continues to innovateand improve System service capabilities,committed to providing customers with safe,stable and efficient pump products and services,exceeding customer expectations andenhancing customer value!

                                                                                                                                                  

                                                                                                                                                                                                                                                                                 

Certifications

 

Packaging & Shipping

    
 

FAQ

                                                                                                                                                                                                                                                                             

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Flow: 1.6-3000m3/H
Samples:
US$ 1000/pcs
1 pcs(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China manufacturer Horizontal 1 Year Belloni Wooden Box 800*500*500mm China Vacuum Pump   vacuum pump brakesChina manufacturer Horizontal 1 Year Belloni Wooden Box 800*500*500mm China Vacuum Pump   vacuum pump brakes
editor by CX 2024-04-13

China manufacturer 06e145100t Brake Vacuum Pump for Audi A4 Cabrio A4 Quattro 3.2L A6 vacuum pump engine

Product Description

Product Description

06E145100T Brake Vacuum Pump For Audi A4 Cabrio A4 Quattro 3.2L A6

Part Name Brake vacuum pump
Part Number 06E145100T
Condition New, In Stock
Delivery Time 7-15 Days
Shipping Port ZheJiang /HangZhou/HangZhou
Application For Audi A4 Cabrio A4 Quattro 3.2L A6
Function Brake vacuum pump is an indispensable part of the automobile brake system, its main role is to provide negative pressure, thereby increasing the performance and safety of the brake booster.

 

Detailed Photos

 

Certifications

 

Company Profile

Welcome to ZheJiang Jicheng Trading Co., Ltd. The company was established in China on August 19, 2003, as HangZhou CZPT Automotive Parts Co., Ltd., focusing on the sales of automotive parts. Since the establishment of ZheJiang Jicheng Trading Co., Ltd. on June 21, 2018, all business operations have been transferred from HangZhou CZPT Automotive Parts Co., Ltd. to this company, and it has been thriving in the global market ever since. With nearly 20 years of rich history, we take pride in being a leading force in the automotive industry, specializing in the sales of high-quality automotive parts for various vehicles.
 
At ZheJiang Jicheng, our commitment to CZPT and customer satisfaction has propelled us to the forefront of the auto parts sales business. Our extensive product range encompasses components for passenger cars, commercial vehicles, and construction machinery. We proudly supply an array of world-renowned brand model engines and vehicle parts, ensuring that our clients have access to top-tier products that meet the highest standards of quality and performance.

FAQ

Q1: What’s the price?
A1: The price is negotiable. It can be changed according to your quantity or package. When you are making an inquiry, please let us know the quantity you want.

Q2: How can I get a sample before placing an order?
A2: We can provide you a sample, you need to pay the goods and air freight to us.

Q3: What’s the MOQ?
A3: The minimum order quantity of each item is different, if the MOQ does not meet your requirement, please email me, or chat with me.

Q4: Can you customize it?
A4: Welcome, you can send your own design of automotive product and logo, we can open new mold and print or emboss any logo for yours.

Q5: Will you provide a warranty?
A5: Yes, we are very confident in our products, and we pack them very well, so usually you will receive your order in good condition. But due to the long time shipment, there will be little damage to products. Any quality issue, we will deal with it immediately.

Q6: How to pay?
A6: We support multiple payment methods, if you have any questions, pls contact me.

Q7: How to confirm a spare part ?
A7: Usually, we confirm a spare part according to following details:
(1) Applied model and brand.
(2) Model Part number.
(3) Photos of a spare part.

If you have any questions, please don’t hesitate to contact us. We are always ready to offer you help to build friendly cooperation with you!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12m
Warranty: 12m
Type: Brake System
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|

Order Sample

STD
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is a device that draws gas molecules from a sealed volume and maintains a partial vacuum. Its main job is to create a relative vacuum within a given volume or volumes. There are many types of vacuum pumps. This article will describe how they work, their types, and their applications.

How it works

A vacuum pump is a mechanical device that removes gas from a system by applying it to a higher pressure than the surrounding atmosphere. The working principle of the vacuum pump is based on the principle of gas transfer and entrapment. Vacuum pumps can be classified according to their vacuum level and the number of molecules that can be removed per cubic centimeter of space. In medium to high vacuum, viscous flow occurs when gas molecules collide with each other. Increasing the vacuum causes molecular or transitional flow.
A vacuum pump has several components that make it a versatile tool. One of the main components is the motor, which consists of a rotor and a stator. The rotor and stator contain coils that generate a magnetic field when excited. Both parts must be mounted on a base that supports the weight of the pump. There is also an oil drain that circulates oil throughout the system for lubrication and cooling purposes.
Another type of vacuum pump is the liquid ring vacuum pump. It works by positioning the impeller above or below the blades. Liquid ring pumps can also adjust the speed of the impeller. However, if you plan to use this type of pump, it is advisable to consult a specialist.
Vacuum pumps work by moving gas molecules to areas of higher or lower pressure. As the pressure decreases, the removal of the molecules becomes more difficult. Industrial vacuum systems require pumps capable of operating in the 1 to 10-6 Torr range.

Type

There are different types of vacuum pumps. They are used in many different applications, such as laboratories. The main purpose of these pumps is to remove air or gas molecules from the vacuum chamber. Different types of pumps use different techniques to achieve this. Some types of pumps use positive displacement, while others use liquid ring, molecular transfer, and entrapment techniques.
Some of these pumps are used in industrial processes, including making vacuum tubes, CRTs, electric lights, and semiconductor processing. They are also used in motor vehicles to power hydraulic components and aircraft. The gyroscope is usually controlled by these pumps. In some cases, they are also used in medical settings.
How a vacuum pump works depends on the type of gas being pumped. There are three main types: positive displacement, negative displacement, and momentum transfer. Depending on the type of lubrication, these principles can be further divided into different types of pumps. For example, dry vacuum pumps are less sensitive to gases and vapors.
Another type of vacuum pump is called a rotary vane pump. This type of pump has two main components, the rotor and the vacuum chamber. These pumps work by rotating moving parts against the pump casing. The mating surfaces of rotary pumps are designed with very small clearances to prevent fluid leakage to the low pressure side. They are suitable for vacuum applications requiring low pulsation and high continuous flow. However, they are not suitable for use with grinding media.
There are many types of vacuum pumps and it is important to choose the right one for your application. The type of pump depends on the needs and purpose of the system. The larger ones can work continuously, and the smaller ones are more suitable for intermittent use.
Vacuum Pump

Apply

Vacuum pumps are used in a variety of industrial and scientific processes. For example, they are used in the production of vacuum tubes, CRTs, and electric lamps. They are also used in semiconductor processing. Vacuum pumps are also used as mechanical supports for other equipment. For example, there may be multiple vacuum pumps on the engine of a motor vehicle that powers the hydraulic components of an aircraft. In addition, they are often used in fusion research.
The most common type of vacuum pump used in the laboratory is the rotary vane pump. It works by directing airflow through a series of rotating blades in a circular housing. As the blades pass through the casing, they remove gas from the cavity and create a vacuum. Rotary pumps are usually single or double-stage and can handle pressures between 10 and 6 bar. It also has a high pumping speed.
Vacuum pumps are also used to fabricate solar cells on wafers. This involves a range of processes including doping, diffusion, dry etching, plasma-enhanced chemical vapor deposition, and bulk powder generation. These applications depend on the type of vacuum pump used in the process, and the vacuum pump chosen should be designed for the environment.
While there are several types of vacuum pumps available, their basic working principles remain the same. Each has different functions and capacities, depending on the type of vacuum. Generally divided into positive displacement pump, rotary vane pump, liquid ring pump, and molecular delivery pump.

Maintenance

The party responsible for general maintenance and repairs is the Principal Investigator (PI). Agknxs must be followed and approved by the PI and other relevant laboratory personnel. The Agknx provides guidelines for routine maintenance of vacuum pump equipment. Agknxs are not intended to replace detailed routine inspections of vacuum pump equipment, which should be performed by certified/qualified service personnel. If the device fails, the user should contact PI or RP for assistance.
First, check the vacuum pump for any loose parts. Make sure the inlet and outlet pressure gauges are open. When the proper pressure is shown, open the gate valve. Also, check the vacuum pump head and flow. Flow and head should be within the range indicated on the label. Bearing temperature should be within 35°F and maximum temperature should not exceed 80°F. The vacuum pump bushing should be replaced when it is severely worn.
If the vacuum pump has experienced several abnormal operating conditions, a performance test should be performed. Results should be compared to reference values ​​to identify abnormalities. To avoid premature pump failure, a systematic approach to predictive maintenance is essential. This is a relatively new area in the semiconductor industry, but leading semiconductor companies and major vacuum pump suppliers have yet to develop a consistent approach.
A simplified pump-down test method is proposed to evaluate the performance of vacuum pumps. The method includes simulated aeration field tests and four pump performance indicators. Performance metrics are evaluated under gas-loaded, idle, and gas-load-dependent test conditions.
Vacuum Pump

Cost

The total cost of a vacuum pump consists of two main components: the initial investment and ongoing maintenance costs. The latter is the most expensive component, as it consumes about four to five times the initial investment. Therefore, choosing a more energy-efficient model is a good way to reduce the total system cost and payback period.
The initial cost of a vacuum pump is about $786. Oil-lubricated rotary vane pumps are the cheapest, while oil-free rotary vane pumps are slightly more expensive. Non-contact pumps also cost slightly more. The cost of a vacuum pump is not high, but it is a factor that needs careful consideration.
When choosing a vacuum pump, it is important to consider the type of gas being pumped. Some pumps are only suitable for pumping air, while others are designed to pump helium. Oil-free air has a different pumping rate profile than air. Therefore, you need to consider the characteristics of the medium to ensure that the pump meets your requirements. The cost of a vacuum pump can be much higher than the purchase price, as the daily running and maintenance costs can be much higher.
Lubricated vacuum pumps tend to be more durable and less expensive, but they may require more maintenance. Maintenance costs will depend on the type of gas that needs to be pumped. Lighter gases need to be pumped slowly, while heavier gases need to be pumped faster. The maintenance level of a vacuum pump also depends on how often it needs to be lubricated.
Diaphragm vacuum pumps require regular maintenance and oil changes. The oil in the diaphragm pump should be changed every 3000 hours of use. The pump is also resistant to chemicals and corrosion. Therefore, it can be used in acidic and viscous products.

China manufacturer 06e145100t Brake Vacuum Pump for Audi A4 Cabrio A4 Quattro 3.2L A6   vacuum pump engine	China manufacturer 06e145100t Brake Vacuum Pump for Audi A4 Cabrio A4 Quattro 3.2L A6   vacuum pump engine
editor by CX 2024-04-13