Tag Archives: vacuum pump with water

China manufacturer Made in China CE Certification Vacuum High Pressure Water Pump with Quality vacuum pump ac

Product Description

 

Product Description

1. Drain pump commonly used in washing machine/air conditioner/  dishwasher and so on.

2. The Drain pump enjoy their high efficiency, low energy consumption,long life and low noise.

3.A variety of pump covers design for customer choice, can also be designed according to customer requirements.

4.Different thickness of the iron core is suitable for all kinds of customers’ requirements.

5.The certification of TUV, UL, CCC

6.Good quality drain pump with low price. If you want drain pump more details , pls don’t hesitate to contact us.

 7.The technical parameters depending on the customer’s requirements

Name Drain pump
Type Washing machine parts
Material Copper/Copper Clad Aluminum/Aluminum
Voltage 110-127V/220-240V
Frequency 50/60Hz
Current 0.2A
Power 30-40W
Packing 48PCS/CTN

 

Detailed Photos

 

Main products

 

Company Profile

Workshop

Exhibition

 

Certifications

 

 

 


 

FAQ

 

1 Q: Are you a manufacturer or trading company?

A:We are professional drain pump and motor manufacturer for almost 10 years.

2. Q: What’s your delivery time?

A: 1. The stock samples can be sent to you within 3-5 days by international express.

2. The batch order can be shipped to you in about 25-30 days after order confirmation( by air or by sea).

3 Q: Is it all right to make customer’s own brand name?

A:Yes, we accept OEM.

4 Q: What is your loading port?

A:Xihu (West Lake) Dis. port.

5 Q: What are your payment terms?

A:We can acceptT/T,L/C,DP,.

 

Any more question.Please contact us without any hesitation.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Power: Electric
Rated Voltage: AC110-127V/ 220-240V
Frequence: 50/60Hz
Power(W): 30-40W
Material: Plastic&Metal
Application: Washing Machine
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is a device that draws gas molecules from a sealed volume and maintains a partial vacuum. Its main job is to create a relative vacuum within a given volume or volumes. There are many types of vacuum pumps. This article will describe how they work, their types, and their applications.

How it works

A vacuum pump is a mechanical device that removes gas from a system by applying it to a higher pressure than the surrounding atmosphere. The working principle of the vacuum pump is based on the principle of gas transfer and entrapment. Vacuum pumps can be classified according to their vacuum level and the number of molecules that can be removed per cubic centimeter of space. In medium to high vacuum, viscous flow occurs when gas molecules collide with each other. Increasing the vacuum causes molecular or transitional flow.
A vacuum pump has several components that make it a versatile tool. One of the main components is the motor, which consists of a rotor and a stator. The rotor and stator contain coils that generate a magnetic field when excited. Both parts must be mounted on a base that supports the weight of the pump. There is also an oil drain that circulates oil throughout the system for lubrication and cooling purposes.
Another type of vacuum pump is the liquid ring vacuum pump. It works by positioning the impeller above or below the blades. Liquid ring pumps can also adjust the speed of the impeller. However, if you plan to use this type of pump, it is advisable to consult a specialist.
Vacuum pumps work by moving gas molecules to areas of higher or lower pressure. As the pressure decreases, the removal of the molecules becomes more difficult. Industrial vacuum systems require pumps capable of operating in the 1 to 10-6 Torr range.

Type

There are different types of vacuum pumps. They are used in many different applications, such as laboratories. The main purpose of these pumps is to remove air or gas molecules from the vacuum chamber. Different types of pumps use different techniques to achieve this. Some types of pumps use positive displacement, while others use liquid ring, molecular transfer, and entrapment techniques.
Some of these pumps are used in industrial processes, including making vacuum tubes, CRTs, electric lights, and semiconductor processing. They are also used in motor vehicles to power hydraulic components and aircraft. The gyroscope is usually controlled by these pumps. In some cases, they are also used in medical settings.
How a vacuum pump works depends on the type of gas being pumped. There are three main types: positive displacement, negative displacement, and momentum transfer. Depending on the type of lubrication, these principles can be further divided into different types of pumps. For example, dry vacuum pumps are less sensitive to gases and vapors.
Another type of vacuum pump is called a rotary vane pump. This type of pump has two main components, the rotor and the vacuum chamber. These pumps work by rotating moving parts against the pump casing. The mating surfaces of rotary pumps are designed with very small clearances to prevent fluid leakage to the low pressure side. They are suitable for vacuum applications requiring low pulsation and high continuous flow. However, they are not suitable for use with grinding media.
There are many types of vacuum pumps and it is important to choose the right one for your application. The type of pump depends on the needs and purpose of the system. The larger ones can work continuously, and the smaller ones are more suitable for intermittent use.
Vacuum Pump

Apply

Vacuum pumps are used in a variety of industrial and scientific processes. For example, they are used in the production of vacuum tubes, CRTs, and electric lamps. They are also used in semiconductor processing. Vacuum pumps are also used as mechanical supports for other equipment. For example, there may be multiple vacuum pumps on the engine of a motor vehicle that powers the hydraulic components of an aircraft. In addition, they are often used in fusion research.
The most common type of vacuum pump used in the laboratory is the rotary vane pump. It works by directing airflow through a series of rotating blades in a circular housing. As the blades pass through the casing, they remove gas from the cavity and create a vacuum. Rotary pumps are usually single or double-stage and can handle pressures between 10 and 6 bar. It also has a high pumping speed.
Vacuum pumps are also used to fabricate solar cells on wafers. This involves a range of processes including doping, diffusion, dry etching, plasma-enhanced chemical vapor deposition, and bulk powder generation. These applications depend on the type of vacuum pump used in the process, and the vacuum pump chosen should be designed for the environment.
While there are several types of vacuum pumps available, their basic working principles remain the same. Each has different functions and capacities, depending on the type of vacuum. Generally divided into positive displacement pump, rotary vane pump, liquid ring pump, and molecular delivery pump.

Maintenance

The party responsible for general maintenance and repairs is the Principal Investigator (PI). Agknxs must be followed and approved by the PI and other relevant laboratory personnel. The Agknx provides guidelines for routine maintenance of vacuum pump equipment. Agknxs are not intended to replace detailed routine inspections of vacuum pump equipment, which should be performed by certified/qualified service personnel. If the device fails, the user should contact PI or RP for assistance.
First, check the vacuum pump for any loose parts. Make sure the inlet and outlet pressure gauges are open. When the proper pressure is shown, open the gate valve. Also, check the vacuum pump head and flow. Flow and head should be within the range indicated on the label. Bearing temperature should be within 35°F and maximum temperature should not exceed 80°F. The vacuum pump bushing should be replaced when it is severely worn.
If the vacuum pump has experienced several abnormal operating conditions, a performance test should be performed. Results should be compared to reference values ​​to identify abnormalities. To avoid premature pump failure, a systematic approach to predictive maintenance is essential. This is a relatively new area in the semiconductor industry, but leading semiconductor companies and major vacuum pump suppliers have yet to develop a consistent approach.
A simplified pump-down test method is proposed to evaluate the performance of vacuum pumps. The method includes simulated aeration field tests and four pump performance indicators. Performance metrics are evaluated under gas-loaded, idle, and gas-load-dependent test conditions.
Vacuum Pump

Cost

The total cost of a vacuum pump consists of two main components: the initial investment and ongoing maintenance costs. The latter is the most expensive component, as it consumes about four to five times the initial investment. Therefore, choosing a more energy-efficient model is a good way to reduce the total system cost and payback period.
The initial cost of a vacuum pump is about $786. Oil-lubricated rotary vane pumps are the cheapest, while oil-free rotary vane pumps are slightly more expensive. Non-contact pumps also cost slightly more. The cost of a vacuum pump is not high, but it is a factor that needs careful consideration.
When choosing a vacuum pump, it is important to consider the type of gas being pumped. Some pumps are only suitable for pumping air, while others are designed to pump helium. Oil-free air has a different pumping rate profile than air. Therefore, you need to consider the characteristics of the medium to ensure that the pump meets your requirements. The cost of a vacuum pump can be much higher than the purchase price, as the daily running and maintenance costs can be much higher.
Lubricated vacuum pumps tend to be more durable and less expensive, but they may require more maintenance. Maintenance costs will depend on the type of gas that needs to be pumped. Lighter gases need to be pumped slowly, while heavier gases need to be pumped faster. The maintenance level of a vacuum pump also depends on how often it needs to be lubricated.
Diaphragm vacuum pumps require regular maintenance and oil changes. The oil in the diaphragm pump should be changed every 3000 hours of use. The pump is also resistant to chemicals and corrosion. Therefore, it can be used in acidic and viscous products.

China manufacturer Made in China CE Certification Vacuum High Pressure Water Pump with Quality   vacuum pump acChina manufacturer Made in China CE Certification Vacuum High Pressure Water Pump with Quality   vacuum pump ac
editor by Dream 2024-05-17

China Professional Desktop Circulating Water Vacuum Pump Mini Small with high quality

Product Description

Product Description

SHZ-D(III) table type anti-corrosion circulating water vacuum pump is on basis of multiple purpose circulating water vacuum pump, considered from the small laboratory area, referred to Japanese table model pump, and make improvements of one-time molding shell and reduced volume. SHZ-D(III) table type anti-corrosion circulating water vacuum pump has features of small volume, light weight, beautiful appearance, double-meter and double-end air exhausting, four-meter and four-end, it’s a multiple purpose vacuum pump whose both sides are the same, which is not only convenient for teacher to demonstrate, but also for students to turn on/off from any side.

SHZ-D(III) table type anti-corrosion circulating water vacuum pump’s engine body has double tapping, can be single used or parallel used with 2 vacuum meter. Main engine is made from stainless steel movement and anti-corrosion movement. It embraces advantages of anti-corrosion, no pollution, low noise and convenient to move, can also add vacuum control valve according to client needs. SHZ-D(III) table type anti-corrosion circulating water vacuum pump enables 4 students to conduct chemical experiments at the same time, and shrank experiment space.

Product Features

Water-saving and recycling use. It is particularly suitable for tall building laboratory which is lack of water or insufficient water pressure. After testing in 1 working day, continuous use may save water more than 8 tons.

Multi-function application. Providing vacuum conditions, as well as circulating cooling water to the reaction device. Suction air hole can work alone or in parallel operation.

Corrosion resistant, free-pollution, stable performance, low noise and durable.

The water vacuum pumps use water as the working fluid, adopt fluidicsto form negative pressure. The motor is made of stainless steel or anti-corrosion material. 

Our Advantages

The circulating water vacuum pump uses the rotation of the motor to drive the circulating water and extract the gas in the connecting system, which has achieved the purpose of gradually reducing the pressure in the system. At present, the circulating water pump is often used in the laboratory for decompression filtration and other operations.

  1. The water saving effect is obvious. Due to the water circulation operation, the water added to the water tank can be cycled back and forth, which overcomes the phenomenon of wasting a lot of water when the tap water method is directly vacuuming.
  2. Multifunctional comprehensive application. In addition to providing vacuum conditions, this machine can also automatically circulate water externally to provide circulating cooling water for the reaction device.
  3. Fashionable and easy to use.
  4. The machine is equipped with 5 suction nozzles, which can be used to pump air separately or observe the vacuum degree at the same time.
  5. Corrosion resistance, no pollution. The pump parts of this machine are made of stainless steel, and the water tank is made of ABS plastic. It is formed in 1 time and is not affected by corrosive substances such as acid and alkali.

Product Parameters

Product Model SHZ-DIII
Power 370W
Power Supply 220V
Flow 40L/MIN
Head 12M
Pump Head Material Corrosion resistant
Pump Head 4 pieces
Sucking Rate 10L/MIN
Vacuum Degree 0.098MPA
Volume 15L
Dimension 520mm*440mm*350mm

 

Product Details

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Structure: Rotary Vacuum Pump
Samples:
US$ 179/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.

Forward centrifugal pump

Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.

Self-priming centrifugal pump

Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.

Screw Pump

The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Vacuum Pump

Diaphragm Pump

Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.

Atmospheric pressure is a key factor in a vacuum pump system

Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
Vacuum Pump

The screw pump is less efficient in pumping gases with smaller molecular weight

Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.

China Professional Desktop Circulating Water Vacuum Pump Mini Small   with high quality China Professional Desktop Circulating Water Vacuum Pump Mini Small   with high quality
editor by Dream 2024-05-16

China Hot selling 2be4426 Water Ring Vacuum Pump with high quality

Product Description

2BE4426 Water Ring Vacuum Pump / Liquid Ring Vacuum Pump (2BE4)

The 2BE4 vacuum pump produced by CHINAMFG International (Xihu (West Lake) Dis.) Co., Ltd was developed from the proven CHINAMFG 2BE3 pumps, whose reliable performance has been further improved..

The footprint and connections to the CHINAMFG 2BE4 models are identical to its predecessors, the CHINAMFG 2BE3 pump. Therefore, exchanging or upgrading to the more efficient CHINAMFG 2BE3 requires no site modifications.

The CHINAMFG 2BE4 model is available in cast iron, with stainless steel coming soon. The 2BE4 is perfect for use in mining, filter applications, paper mills, power plants, chemical plants, refineries and more

Main type for 2BE4 series vacuum pump and compressor
2BE4400,2BE4406,2BE4420,2BE4426,2BE4500,2BE4506,2BE4520,2BE4526,2BE4600,2BE4606, 2BE4620, 2BE4626, 2BE4 670, 2BE4676,2BE4 720,2BE4726

With our high products quality and good services, we have got the CE certificate for our products. 
Our experienced and knowledgeable staff is dedicated to providing high quality products and after-sales supports.

Welcome clients from home and abroad to contact us and establish business relations

The main characteristics of 2BE4 series products:

All the bearings are the imported products with the brand name of CHINAMFG orNTN for ensuring the precise orientation and the high stability during the working of the pump.

The material of the impeller is QT400 nodular iron or stainless steel for ensuring the stability when the pump works under the rigorous condition and can extend the lifetime of the pump.

The casing is made of steel or stainless steel plates to extend the lifetime of the 2BE1 series pumps.

The shaft bushing is made of stainless steel to improve the lifetime of the pump 5 times than the normal material.

The V-belt pulley (when the pump is driven by the belt) is used the high precise pulley with taper bushing to keep the reliability of the pump and extend its life. And it is also easy to mantle and dismantle.

The coupling is used to drive the pump directly. The flexible part connecting the 2 half coupling is made of polyurethane that makes the pump more reliable.

The unique design to set the separator above the pump saves the space and decreases the noise efficiently.

All the parts are cast by the resin sands that make the pump surface very smooth. It is not necessary to cover the surface of the pumps with putty and gives out the heat efficiently.

The mechanical seals (optional) are used the imported products to avoid the leakage when the pump works for a long time.

               

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Vacuum Pump
Working Conditions: Wet
Customization:
Available

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China Hot selling 2be4426 Water Ring Vacuum Pump   with high quality China Hot selling 2be4426 Water Ring Vacuum Pump   with high quality
editor by Dream 2024-04-30

China manufacturer Water Ring Vacuum Pump 2be 750m3/H 2be Series Liquid Ring Vacuum Pump D/V Type Drive with Great quality

Product Description

Product Description

2BE liquid ring vacuum pump is CZPT liquid ring vacuum pump and is used to transport gases and vapors, predominantly for intake pressures below atmospheric pressure. Our 2BE liquid ring vacuum pump is available in 20 models, and is ATEX Certified. It offered It offered Suction capacity from 150 to 38000m³/h. It has reliable operation and economic power consumption. We also have 2BE pump with Partition wall in pump casing special for paper industry.

We offer same outline dimensions for bolt-on replacement and equivalent performances with original 2BV liquid ring vacuum pump.

ITEM

UNIT

Quantity

Supply Ability

per month

2,000set

2BE series water ring vacuum pumps and compressors are the products with high efficiency and economical power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.  These series products adopt CZPT and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economical power.  Comparing with the SK, 2SK, SZ series water ring vacuum pumps used widely in our country at present, the 2BE series products are the ideal replacements of them for high vacuum, low power, and running reliability

Product Series

Company Profile

 

Certifications

 

Packaging & Shipping

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Samples:
US$ 10000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.

Forward centrifugal pump

Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.

Self-priming centrifugal pump

Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.

Screw Pump

The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Vacuum Pump

Diaphragm Pump

Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.

Atmospheric pressure is a key factor in a vacuum pump system

Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
Vacuum Pump

The screw pump is less efficient in pumping gases with smaller molecular weight

Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.

China manufacturer Water Ring Vacuum Pump 2be 750m3/H 2be Series Liquid Ring Vacuum Pump D/V Type Drive   with Great quality China manufacturer Water Ring Vacuum Pump 2be 750m3/H 2be Series Liquid Ring Vacuum Pump D/V Type Drive   with Great quality
editor by Dream 2024-04-30

China Hot selling Roots Vacuum- Water Ring Vacuum Pump with high quality

Product Description

 

Product Feature

JZJ2S type Roots water ring unit is made of ZJ type Roots pump as the main beat pump, double stage water ring pump or Roots – water ring group as the former pump maggot into the pump maggot, it can be used in addition to remove the general gas, but also can be used to pump containing water or a small amount of dust gas. That is, compared with the general mechanical vacuum pump, not afraid of oil pollution, not afraid of water air and fine dust, and compared with the general water ring vacuum pump, not afraid of oil pollution, not afraid of water air and fine dust, and compared with the general water ring vacuum pump, has the characteristics of high true void and high pumping speed under high vacuum degree conditions – therefore. It is an ideal vacuum pumping equipment for drying, dewatering, vacuum condensing and vacuum residual gas treatment in textile, food, chemical industry, petroleum, refining and other industries.

Model description:

Example: J ZJ 2S 1200 – 4.2
J- Pump set
ZJ- Roots pump as main pump
2S- The primary front pump is a two-stage water ring pump
1200- Main pump pumping speed L/S
4.2- Pump speed matching ratio code

Product Parameters

 

Unit model Main pump Primary front pump Pumping speed
L/S
Limit pressure
PA
Total power
KW
JZJ2S70-2 ZJ70 2SK-1.5,  2BV2071 70 2.67×102 5.5
JZJ2S70-1 ZJ70 2SK-3,  2BV5111 70 2.67×102 9
JZJ2S150-1 ZJ150 2SK-6,  2BV5131 150 2.67×102 10.5
JZJ2S150-2 ZJ150 2SK-3,  2BV5111 150 2.67×102 18
JZJ2S300-2 ZJ300 2SK-6,  2BV5131 300 2.67×102 19
JZJ2S300-1 ZJ300 2SK-12,  2BEA-202 300 2.67×102 26
JZJ2S600-2A ZJ600 2SK-12,  2BEA-202 600 2.67×102 27.5
JZJ2S600-2B ZJ600 2SK-20,  2BEA-203 600 2.67×102 42.5
JZJ2S150-4.2 ZJ150 ZJ30, 2SK-1.5,  2BV2071 150 6.7×10 7.75
JZJ2S300-4.2 ZJ300 ZJ70,  2SK-1.5,  2BV2071 300 6.7×10 9.5
JZJ2S300-4.1 ZJ300 ZJB70,  2SK-3,  2BV5111 300 6.7×10 13
JZJ2S600-4.2 ZJ600 ZJB150,  2SK-3,  2BV5111 600 6.7×10 16
JZJ2S600-4.1 ZJ600 ZJB150,  2SK-6,  2BV5131 600 6.7×10 23.5
JZJ2S1200-4.2 ZJ1200 ZJB300,  2SK-6,  2BV5131 1200 6.7×10 30
JZJ2S1200-4.1 ZJ1200 ZJB300,  2SK-12,  2BEA-202 1200 6.7×10 37
JZJ2S2500-4.2A ZJ2500 ZJB600,  2SK-12,  2BEA-202 1200 6.7×10 44.5
JZJ2S2500-4.2B ZJ2500 ZJB600,  2SK-20,  2BEA-203 1200 6.7×10 59.5
JZJ2S300-4.2.1 ZJ7300 ZJ70,  ZJB30,  2SK-1.5,  2BV2071 300 5×10-1 10.25
JZJ2S600-4.2.1 ZJ600 ZJ150,  ZJB70,  2SK-3,  2BV5121 600 5×10-1 17.5
JZJ2S1200-4.2.1 ZJ1200 ZJ300,  ZJB150,  2SK-6,  2BV5161 1200 5×10-1 33
JZJ2S2500-4.2.1 ZJ2500 ZJ600,  ZJB300,  2SK-12,  2BEA-203 2500 5×10-1 48.5
JZJ2BEA600-2.1 ZJ600 ZJ300,  2BEA-203 600 6.7×10 55.5
JZJ2BEA12002.1 ZJ1200 ZJ600,  2BEA-253 1200 6.7×10 110
JZJ2BEA2500-2.1 ZJ2500 ZJ1200,  2BEA-303 2500 6.7×10 145

Detailed Photos

 

Factory overview

 

machine center

 

Warehouse overview

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online
Warranty: 1 Years
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: Low Vacuum
Customization:
Available

|

roots vacuum pump

What Is the Significance of Roots Vacuum Pumps in the Aerospace Sector?

Roots vacuum pumps play a significant role in various applications within the aerospace sector. Here’s a detailed explanation:

1. Space Simulation Chambers:

– Vacuum Simulation: Roots vacuum pumps are utilized in space simulation chambers to create and maintain vacuum conditions similar to the space environment. These chambers are used to test and simulate the performance of aerospace components and systems under low-pressure conditions, including the effects of vacuum on materials, electronics, and mechanical systems.

– Thermal Vacuum Testing: Roots pumps are crucial in thermal vacuum testing, where aerospace components and systems are subjected to extreme temperature and vacuum conditions. The pumps help evacuate the test chamber and maintain the required vacuum level, enabling accurate thermal testing and evaluation of aerospace equipment’s performance and functionality in space-like conditions.

2. Propellant Handling and Storage:

– Rocket Engine Testing: Roots vacuum pumps are employed in rocket engine testing facilities for propellant handling and storage. They assist in creating a vacuum environment during the propellant loading and purging processes, ensuring the removal of air or contaminants from the propellant tanks and lines. This helps maintain the propellant’s quality and prevents potential issues, such as cavitation or gas bubble formation, that could affect engine performance.

– Fuel Systems: Roots pumps are used in aerospace fuel systems to evacuate and degas the fuel tanks, ensuring the removal of air or gas bubbles that may compromise fuel delivery and engine operation. These pumps contribute to the overall efficiency, reliability, and safety of fuel systems in aerospace vehicles.

3. Environmental Control Systems (ECS):

– Cabin Pressure Control: Roots vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft to help control cabin pressure. By creating a vacuum or adjusting the air circulation, these pumps assist in maintaining the desired cabin pressure levels, ensuring passenger comfort, and providing a safe and controlled environment during flight.

4. Avionics and Electronics:

– Electronic Component Testing: Roots vacuum pumps are employed in the testing and validation of avionics and electronic components used in aerospace applications. These pumps assist in creating a controlled vacuum environment during testing, allowing engineers to evaluate the performance, reliability, and durability of electronic systems under low-pressure conditions.

– Vacuum Encapsulation: In certain aerospace applications, electronic components or circuits may require vacuum encapsulation for protection against harsh environmental conditions, including high altitude, temperature variations, or moisture. Roots vacuum pumps are utilized to create the necessary vacuum environment for the encapsulation process, ensuring the integrity and longevity of sensitive electronics.

5. Space Propulsion Systems:

– Ion Thrusters and Electric Propulsion: Roots vacuum pumps are integral components of ion thrusters and electric propulsion systems used in spacecraft. These pumps aid in the creation and maintenance of the high vacuum conditions required for the operation of these advanced propulsion technologies. They contribute to the efficient exhaust gas removal, ensuring optimal thrust generation and fuel efficiency.

6. Satellite Manufacturing and Testing:

– Satellite Chamber Evacuation: Roots vacuum pumps are utilized in satellite manufacturing and testing facilities for the evacuation of satellite chambers. These pumps help create the required vacuum conditions during satellite assembly, testing, and payload integration, ensuring the cleanliness, functionality, and performance of satellite systems and instruments.

In summary, Roots vacuum pumps have significant significance in the aerospace sector. They are utilized in space simulation chambers, propellant handling and storage, environmental control systems, avionics and electronics testing, space propulsion systems, and satellite manufacturing and testing. By creating and maintaining vacuum conditions, Roots pumps contribute to the performance, reliability, and safety of aerospace components, systems, and vehicles. They play a vital role in supporting space exploration, satellite communication, and the advancement of aerospace technologies.

roots vacuum pump

What Are the Advantages of Using Roots Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, offer several advantages that make them a popular choice for various industrial applications. Here’s a detailed explanation of the advantages of using Roots vacuum pumps:

1. High Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can remove gas from a vacuum system. The unique design of synchronized rotating lobes enables these pumps to handle large volumes of gas efficiently. This high pumping speed makes Roots vacuum pumps well-suited for applications that require rapid evacuation or continuous extraction of gases.

2. Large Gas Handling Capacity: Roots vacuum pumps have a large gas handling capacity, allowing them to handle a wide range of gases, including clean air, corrosive gases, and vapors. Their robust construction and ability to handle gas with particulates or liquids make them suitable for applications in industries such as chemical processing, pharmaceuticals, food processing, and wastewater treatment.

3. Oil-Free and Contamination-Free Operation: One of the significant advantages of Roots vacuum pumps is that they operate without the need for lubrication. The non-contacting design of the pump eliminates the risk of oil contamination in the vacuum system. This is particularly important in applications where clean, oil-free vacuum environments are required, such as semiconductor manufacturing, electronics, and research laboratories.

4. Reliable and Low Maintenance: Roots vacuum pumps are known for their reliability and low maintenance requirements. Since there is no lubrication or contact between the lobes, there is minimal wear and tear, reducing the need for frequent maintenance or replacement of parts. This results in reduced downtime and lower operating costs for the users.

5. Noise and Vibration Reduction: Roots vacuum pumps are designed to operate with low noise and vibration levels. The precision engineering and balanced rotation of the lobes help minimize noise generation and vibration transmission. This makes Roots vacuum pumps suitable for applications where noise reduction and vibration control are important, such as in laboratories, medical facilities, and residential areas.

6. Wide Range of Vacuum Levels: While Roots vacuum pumps are not capable of achieving high vacuum levels on their own, they can be combined with other vacuum pumps, such as rotary vane pumps or diffusion pumps, to create hybrid or combination pumping systems. This allows them to cover a wide range of vacuum levels, making them versatile and adaptable to different application requirements.

7. Energy Efficiency: Roots vacuum pumps are designed to be energy-efficient, offering a favorable power-to-pumping speed ratio. Their efficient design and minimal internal losses help reduce energy consumption, resulting in lower operating costs for the users. This makes them an economical choice for continuous or high-throughput processes that require significant vacuum power.

8. Versatility and Compatibility: Roots vacuum pumps are compatible with various gases and can be used in a wide range of industrial applications. They find applications in industries such as chemical processing, pharmaceuticals, food processing, automotive, packaging, and environmental technology. Their versatility and compatibility make them suitable for both rough vacuum applications and as part of complex vacuum systems.

In summary, the advantages of using Roots vacuum pumps include high pumping speed, large gas handling capacity, oil-free and contamination-free operation, reliability, low maintenance requirements, noise and vibration reduction, a wide range of vacuum levels, energy efficiency, versatility, and compatibility. These advantages make Roots vacuum pumps a preferred choice for many industrial processes that require efficient and reliable vacuum generation.

China Hot selling Roots Vacuum- Water Ring Vacuum Pump   with high quality China Hot selling Roots Vacuum- Water Ring Vacuum Pump   with high quality
editor by Dream 2024-04-25

China best Roots Vacuum Pump Vp Electric Value Water 2 Stage Water High Pressure Heavy Duty Rotary AC Liquid Mini CHINAMFG Vacuum Pump Transmission with high quality

Product Description

Roots Vacuum Pump VP electric value water 2 stage water rotary ac liquid heavy duty mini CHINAMFG high pressure vacuum pump transmission 

VP roots vacuum pump is in the 50 Torr-micron high vacuum range has a large pumping speed and low cost of equipment, it can be combined with various vacuum pump consists of a vacuum unit. KMBD roots vacuum pump with 5 point bearing design unique, sealing the five bit machine, sealing double sealing structure + mechanical seal for Teflon maze, can realize non leakage, reduce maintenance and repair of the link, ensure the roots pump and durable. Synchronous helical gear and mounted on the driving end, both to ensure quiet and reliable operation, and can reduce the load of the rotor torque. Impeller and shaft integrally cast, can provide large size shaft, impeller and reduce the risk of damage. All contact with the sealing surface of the shaft end faces are polished to reduce wear and reduce the risk of leakage, high temperature high pressure casing, and double tank design, a variety of material selection, further to ensure that the use of the user in various working conditions. Typical application: chemical, petrochemical, plastics, semiconductors, wood mixture, food processing, vacuum furnace, vacuum booster system, vacuum drying, vacuum dewatering, vacuum packaging

Typical Applications

Special structures working principles,suitable for operation in chemical industry,oil industry,food industry,electrical utility industry,pharmacy industry,textile industry and paper making industry,etc. The other industries that need vacuum drying,concentration,distilling,dehydration and filtering also need the water-ring vacuum pump. It can be use as a backing pump of Roots Pump.

 

Specifications

Model Capacity Ultimate Pressure Power speed
  L/S Pa KW RPM
VP200 200 0.05 4 2900
VP600 600 0.05 7.5 2900

 

Characteristic Curves

Overall Dimensions

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Structure: Piston Pump, Roots Vacuum Pump
Inlet Diam. (mm): 100/200mm
Motor Power (Kw): 4/7.5 Kw
Model Number: Vp
Application: Automotive Industry
Power Source: Hydrauli
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

roots vacuum pump

How Do You Select the Right Size Roots Vacuum Pump for a Specific Application?

Selecting the right size Roots vacuum pump for a specific application requires careful consideration of various factors. Here’s a detailed explanation:

1. Determine the Required Pumping Speed: The pumping speed is a crucial parameter that indicates the volume flow rate of gas that the Roots vacuum pump can handle. To select the right size pump, you need to determine the required pumping speed for your application. Consider factors such as the volume of the system being evacuated, the gas load, and the desired evacuation time. The required pumping speed will help narrow down the options and identify pumps that can meet your application’s demands.

2. Consider the Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that the Roots vacuum pump can achieve under ideal conditions. Different applications have varying vacuum level requirements. Determine the desired ultimate vacuum level for your application, keeping in mind factors such as the sensitivity of the process, the presence of moisture or contaminants, and the specific requirements of the downstream equipment or processes. Ensure that the selected pump can reach the required vacuum level.

3. Evaluate Gas Composition and Characteristics: The composition and characteristics of the gas being pumped are essential considerations. Some gases, such as condensable vapors or corrosive gases, may require special pump features or materials to ensure efficient and safe operation. Consider the gas composition, including its chemical properties, temperature, and any potential challenges it may pose to the pump’s performance or longevity. Consult the pump manufacturer or specialist for guidance on selecting a pump suitable for handling the specific gas or gas mixture in your application.

4. Account for System Constraints and Operating Conditions: Assess the system constraints and operating conditions that may impact the pump’s performance. Factors such as the available space for the pump, power supply requirements, cooling options, and noise limitations should be taken into consideration. Additionally, consider any specific operating conditions such as temperature extremes, high-altitude operation, or continuous-duty requirements. Ensure that the selected pump is compatible with the system constraints and can operate reliably under the anticipated operating conditions.

5. Consult Manufacturer Specifications and Performance Curves: Review the manufacturer’s specifications and performance curves for the Roots vacuum pumps under consideration. These documents provide detailed information about the pump’s capabilities, operating ranges, and performance characteristics. Pay attention to parameters such as pumping speed, ultimate vacuum level, power requirements, and any specific features or limitations. Compare the specifications with your application requirements to identify pumps that align with your needs.

6. Seek Expert Advice: If you are unsure about the pump selection process or have complex application requirements, it is recommended to seek advice from pump manufacturers or specialists. They can provide valuable insights, recommend suitable pump models, and assist in evaluating your specific application needs.

7. Consider Future Expansion and Flexibility: When selecting a Roots vacuum pump, consider the potential for future expansion or changes in your application. If there is a possibility of increased gas load or system requirements in the future, it may be advantageous to select a slightly larger pump to accommodate potential growth and ensure long-term suitability.

In summary, selecting the right size Roots vacuum pump involves determining the required pumping speed, considering the ultimate vacuum level, evaluating gas composition and characteristics, accounting for system constraints and operating conditions, consulting manufacturer specifications, and seeking expert advice when needed. By carefully considering these factors, you can choose a Roots vacuum pump that meets the specific requirements of your application, ensuring efficient and reliable operation.

roots vacuum pump

How Do Roots Vacuum Pumps Differ from Other Types of Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, have distinct characteristics that set them apart from other types of vacuum pumps. Here’s a detailed explanation of the differences between Roots vacuum pumps and other common types of vacuum pumps:

1. Operating Principle: Roots vacuum pumps operate based on the principle of positive displacement. They use synchronized rotating lobes to trap and compress gas, resulting in the creation of a pressure differential that generates vacuum. Other types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, and diffusion pumps, operate on different principles, such as rotor rotation, liquid sealing, or molecular diffusion.

2. Pumping Mechanism: Roots vacuum pumps are non-contacting pumps, meaning there is no physical contact between the lobes or between the lobes and the housing. This eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system. In contrast, many other types of vacuum pumps rely on a sealing mechanism that involves physical contact between moving parts, requiring lubrication to maintain proper operation.

3. Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can remove gas from a vacuum system. They excel at handling large volumes of gas efficiently. This makes Roots vacuum pumps suitable for applications that require rapid evacuation or continuous extraction of gases. Other types of vacuum pumps may have different pumping speeds depending on their design and intended applications.

4. Vacuum Level: While Roots vacuum pumps are efficient at generating rough vacuum levels, typically in the range of 10 to 1,000 mbar, they are not capable of achieving high vacuum levels on their own. They are often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in hybrid or combination pumping systems to achieve higher vacuum levels. In contrast, other types of vacuum pumps, such as turbomolecular pumps or cryogenic pumps, are designed specifically for achieving and maintaining high vacuum levels.

5. Gas Handling: Roots vacuum pumps have a large gas handling capacity and can handle a wide range of gases, including clean air, corrosive gases, and vapors. Their robust construction and ability to handle gas with particulates or liquids make them suitable for applications in various industries. Other types of vacuum pumps may have limitations in terms of the types of gases they can handle or may require additional equipment or treatments to handle specific gases.

6. Applications: Roots vacuum pumps find applications in a wide range of industrial processes, including chemical processing, pharmaceuticals, food processing, environmental technology, semiconductor manufacturing, packaging, and research laboratories. Other types of vacuum pumps, such as turbomolecular pumps, cryogenic pumps, or scroll pumps, may be more commonly used in specific industries or applications where their unique operating principles or capabilities are advantageous.

It’s important to note that the selection of a vacuum pump depends on various factors, including the desired vacuum level, gas composition, pumping speed requirements, application-specific considerations, and budget constraints. Different types of vacuum pumps offer distinct advantages and are chosen based on the specific requirements of the application.

In summary, Roots vacuum pumps differ from other types of vacuum pumps in terms of their operating principle, pumping mechanism, pumping speed, vacuum level capabilities, gas handling capacity, and applications. Understanding these differences helps in selecting the most suitable vacuum pump for a particular industrial process or application.

China best Roots Vacuum Pump Vp Electric Value Water 2 Stage Water High Pressure Heavy Duty Rotary AC Liquid Mini CHINAMFG Vacuum Pump Transmission   with high quality China best Roots Vacuum Pump Vp Electric Value Water 2 Stage Water High Pressure Heavy Duty Rotary AC Liquid Mini CHINAMFG Vacuum Pump Transmission   with high quality
editor by Dream 2024-04-25

China factory Shz Series Water Jet Vacuum Pump Lab Scale with Best Sales

Product Description

Shz Series Water Jet Vacuum Pump Lab Scale

Product Description

The circulating water vacuum pump is a laboratory vacuum generator that uses a water jet to generate a vacuum. This machine is used to provide vacuum conditions for the process of evaporation, distillation, crystallization, drying, sublimation, filtration, degassing, decompression, and so on, particularly be suitable for labs and small-scale tests in industries such as universities and colleges, scientific research institutes, chemical industry, pharmacy, biochemistry,  foodstuff, pesticide, agricultural engineering, biological engineering.

Product Parameters

 

Model SHZ-D SHZ-D
four-meter, four tap
The machine Performance Power(W) 180 370
Voltage(V/Hz) 220/50
Flow(L/min) 60
Lift(m) 8
Body material Anti-corrosion/1Cr18 Anti-corrosion
The machine performance  Max. pressure (M Pa) 0.098
Sucking rate for single tap(L/min) 10
Quantity of tap (Pcs) 2 4
Tank capacity(L) 15
Dimension(mm) 4362
Main Markets: Central America, Mid East, Oceania, Africa, South America

 

Packaging & Shipping

Pre-sale Service:
24 Hours online service for your consult.
Help choose the right model, and a series of services, people, and advise. 
Provide discount for many sets of order
Choose a payment term you convenient.
Promptly production and delivery, inform you in time.
 
After sale service:
1 year warranty service and all-life maintenance.
Technical Engineer is available for oversea training.
Free change for some parts
Remote control technical consult
Maintenance plan

Packaging:
-After use cartons inside, outside with wooden case packaging;
-Both neutral and customized packaging can be available.
Shipping:
-We can ship the goods to you by International Express such as DHL,TNT,EMS,FedEX and so on and you can also choose the appropriate 1 based on your timeline and budget. Besides, you can definitely choose to use your own shipping agent.

Shipping method Note
Express Door to door, very convenient, don’t need to clearance or pick-up
By air Airport to airport, you need to do the customs clearance and pick up the goods at your local airport, which you can have a local shipping agent to do for you.
By sea Port to port and you need to do the customs clearance and pick-up the goods at your local port, which you can have a local shipping agent to do for you.

 

FAQ

1. What’s the minimum order quantity?
One set at present.

2. What kind of payment terms do you accept?
Normally we accept TT, Paypal, Western Union, Alibaba Escrow, and L/C. The exact term will be discussed during the deal.

3. How will you deliver these goods?
It will be decided according to your quantity. Normally we will choose International Express, Air and sea.

4. How will we package glass equipment be?
We package these glass equipment in good and Nonfumigation standard wooden cases.

5. Can you accept OEM terms?
Sure.

6. How to choose suitable equipment?
You tell us your requirements (For example capacity, temperature range, pressure, etc ), we will recommend you the best suitable equipment.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Long Life
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Desktop
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: 0.098kp

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

What Are the Primary Applications of Vacuum Pumps?

Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Processes:

Vacuum pumps play a vital role in numerous industrial processes, including:

– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.

– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.

– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.

– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.

2. Laboratory and Research:

Vacuum pumps are extensively used in laboratories and research facilities for various applications:

– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.

– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.

– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.

– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.

3. Semiconductor and Electronics Industries:

High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:

– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.

– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.

– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.

4. Medical and Healthcare:

Vacuum pumps have several applications in the medical and healthcare sectors:

– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.

– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.

– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.

5. HVAC and Refrigeration:

Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:

– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.

– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.

6. Power Generation:

Vacuum pumps play a role in power generation applications:

– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.

– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.

These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.

China factory Shz Series Water Jet Vacuum Pump Lab Scale   with Best Sales China factory Shz Series Water Jet Vacuum Pump Lab Scale   with Best Sales
editor by Dream 2024-04-23

China Standard 2BV 2880rpm Electric Water Ring Vacuum Pump for Corrugated Cardboard Production Line with high quality

Product Description

Product Description

2BE liquid ring vacuum pump is CHINAMFG liquid ring vacuum pump and is used to transport gases and vapors, predominantly for intake pressures below atmospheric pressure. Our 2BE liquid ring vacuum pump is available in 20 models, and is ATEX Certified. It offered It offered Suction capacity from 150 to 38000m³/h. It has reliable operation and economic power consumption. We also have 2BE pump with Partition wall in pump casing special for paper industry.

We offer same outline dimensions for bolt-on replacement and equivalent performances with original 2BV liquid ring vacuum pump.

ITEM

UNIT

Quantity

Supply Ability

per month

2,000set

2BE series water ring vacuum pumps and compressors are the products with high efficiency and economical power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.  These series products adopt CHINAMFG and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economical power.  Comparing with the SK, 2SK, SZ series water ring vacuum pumps used widely in our country at present, the 2BE series products are the ideal replacements of them for high vacuum, low power, and running reliability

Product Series

Company Profile

 

Certifications

 

Packaging & Shipping

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Samples:
US$ 10000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China Standard 2BV 2880rpm Electric Water Ring Vacuum Pump for Corrugated Cardboard Production Line   with high quality China Standard 2BV 2880rpm Electric Water Ring Vacuum Pump for Corrugated Cardboard Production Line   with high quality
editor by Dream 2024-04-23

China Good quality Mobile Two Treys Diesel Engine Drive Vacuum Priming Well Point Water Pump with Best Sales

Product Description

Product Description

TWP Mobile Two treys Diesel Engine Drive Vacuum Priming well point pump
 

  • Specialized production Manufactory for Well point Pump
  • Focus on technological innovation, Over Industry leading level
  • Good experience at Domestic and oversea market
  • Carefully paint  for Good appearance
  • Years of International service standards, Engineer one-to-1 service

 

 

Model No:TWP
TWP series Movable Diesel Engine self-priming Well point Water Pumps for emergency are joint designed by  DRAKOS PUMP of Singapore and REEOFLO company of Germany . This series of pump can transport all kinds of clean, neutral and corrosive medium containing particles. Solve a lot of traditional self-priming pump faults.  This kind of self-priming pump unique dry running structure will be automatic startup and restart  without liquid for first start,  The suction head can be more than 9 m; Excellent hydraulic design and unique structure keep the high efficiency more than 75%.  And different structure installation for optional.

Product Advantage

1. Suction head reach to 9.5 m   
Vertical suction lift in under 1 minute even on “snore”
 2.Quick start and restart   
No need feeding water before start, first start is the same way.
Reduce the site work
 3. Long use time-Heavy duty internal pump bearings 
 4. Pass the CZPT particles up to 75 mm   
  sensible choice under various working condition.  Due to pass the large diameter CZPT particles, so this SPH pumps are suitable for deep.
5.High capacity air handing can be qualified for Well point dewatering engineering.   
6. Move the work site at any time for we have double wheels and single wheel design.   
7. By controlled floating gas water separation system to ensure that the suction-extended priming efficiency- rapid on-site change in minutes ( mechanical seal option.)
8. Built-in fuel tank for longer running     ( Additional fuel tank available optional )
9. Auto mastic startup control panel.
10. Super size inspection hole cover to facility clean.
11. Dry running ability. 
12. Air separator tank easy for service, stainless steel material is optional.
13. Long running time with minimal service intervention.   
 14 . Flange standard: GB, HG, DIN, ANSI standard, according to your requirements.

Product Parameters

High Volume, Medium-Head,
Large Solids-Handling Capabilities

Diameter DN25-400 mm
Capacity 15-2500 m3/h
Head up to 100m
Liquid Temperature up to 70 ºC

OPTIONS INCLUDE

  • 316 or CD4MCu stainless steel pump-end construction for high and low pH applications.
  • Highway trailer or skid mount, both incorporating integral overnight running fuel tanks.
  • Sound attenuated enclosures. 

Specification/Performance data

  TWP-80 TWP-100 TWP-150 TWP-200 TWP-250 TWP-300
Engine Power /Speed-KW/rpm 11/2900 24/1800(1500) 36/1800(1500) 60/1800(1500) 110/1800(1500) 163/1800(1500)
Dimensions
L x W x H (cm)
170 x 119 x 110 194 x 145 x 15 220 x 150 x 164 243 x 157 x 18 263x160x170 310X1750X180
Solids Handling – mm 40 44 48 52 58 65
Max Head/Max Flow – m/M3/h 40/130 45/180 44/400 65/600 56/900 54/1200

Diesel engine brand is optional by customer’s requests.
 

Detailed Photos

Application

  • High buildings life water supply, fire fighting system, automatic spraying water under the water curtain, long distance water transportation, water circulation in production process, supporting the use of all kinds of equipment and various production process water, etc
  • Water supply & drainage for mines
  • Hotels, restaurants, entertainment refrigeration and air conditioning supply water
  • Boosters systems; Boiler feed water and condensate; Heating and air conditioning
  • Irrigation; Circulation; Industry; Fire – fighting systems; Power plants.

 

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Max.Head: 80-110m
Max.Capacity: >400 L/min
Driving Type: Motor and Engine
Material: Cast Iron/Carbon Steel/ Stainless Steel
Structure: Single-stage Pump
Assembly: Liquid Pumps
Customization:
Available

|

Vacuum Pump

What Are Vacuum Pumps?

Vacuum pumps use air flow as the source of energy. The system is ideal for dewatering wet media, creating filter cakes, and pneumatically moving materials through a pipe. A vacuum pump works through air flow that is moved by differential pressure. The pump’s air flow develops a vacuum in a chamber that is called the vacuum box. As the air flow collects gas at a faster rate than atmospheric pressure, it is considered the “heart” of a vacuum system.

Principles of operation

Vacuum pumps work by reducing the volume of air that moves through them. Depending on the design, there are several different types of vacuum pumps. All of these types operate under the same principles, but have their own special features. Here are some of their most important characteristics. In addition to their capacity, the main differences between these pumps are their manufacturing tolerances, materials of construction, and level of tolerance for chemicals, oil vapor, and vibration.
Vacuum pumps create a partial or low-pressure vacuum by forcing gas molecules from their high-pressure states to their low-pressure states. However, these pumps can only achieve a partial vacuum, and other methods are necessary to reach a higher level of vacuum. As with all pumps, there are several ways to increase the level of a vacuum.
First, consider the type of vacuum you want. This is the most important factor when choosing a vacuum pump. If you need a high level of vacuum, you’ll need a high-quality vacuum pump. High-quality vacuum pumps have a high pressure limit, while ultrahigh-quality pumps are capable of achieving a very low vacuum. As the pressure decreases, the amount of molecules per cubic centimeter decreases and the quality of the vacuum increases.
Positive displacement pumps are best suited for low and medium-pressure systems. But they can’t reach high vacuum, which is why most high-pressure systems use two pumps in tandem. In this case, the positive displacement pump would stall and the other one would be used instead. Similarly, entrapment pumps have higher-pressure limits, so they must be refreshed frequently or exhaust frequently when there is too much gas to capture.
Another important aspect of vacuum pump operation is its speed. The speed of pumping is proportional to the differential pressure across the system. Therefore, the faster the pumping speed, the lower the draining time.

Design

A vacuum pump is a mechanical device used to generate a vacuum. It can create a low or high vacuum. These pumps are used in the process of oil regeneration and re-refining. The design of a vacuum pump must be compatible with the vacuum. The pump’s mass and speed should be matched.
The design of a vacuum pump is important for many reasons. It should be easy to use and maintain. Vacuum pumps need to be protected from external contamination. For this reason, the oil must be kept clean at all times. Contamination may damage the oil, resulting in pump failure. The pump’s design should include features that will prevent this from happening.
The main objective of a vacuum pump is to remove air and other gases from a chamber. As the pressure of the chamber drops, the amount of molecules that can be removed becomes more difficult. Because of this, industrial and research vacuum systems typically require pumps to operate over a large pressure range. The range is generally between one and 10-6 Torr. A standard vacuum system uses multiple pumps, each covering a portion of the pressure range. These pumps can also be operated in a series to achieve optimal performance.
The design of a vacuum pump can vary depending on the application and the pressure requirement. It should be sized appropriately to ensure that it works properly. There are several different types of pumps, so selecting the right pump is essential to maximizing its efficiency. For example, a slow running vee belt drive rotary vane vacuum pump will have a lower running temperature than a fast-running direct-drive pump.
Vacuum Pump

Performance

The performance of a vacuum pump is an important indicator of its overall condition. It helps determine whether the system is performing optimally and how high the ultimate vacuum level can be achieved. A performance log should be maintained to document variations in pump operating hours and voltage as well as the temperature of the pump’s cooling water and oil. The log should also record any problems with the pump.
There are several ways to increase the performance of a vacuum pump. For example, one way is to decrease the temperature of the working fluid. If the temperature of the fluid is too high, it will lead to a low vacuum. A high temperature will make the vacuum degree of the pump even lower, so heat transfer is an important part of the process.
Nozzles are another major component that impacts the performance of a vacuum pump. Damage or clogging can result in a compromised pumping capacity. These problems can occur due to a number of causes, including excessive noise, leakage, and misassembled parts. Nozzles can also become clogged due to rusting, corrosion, or excess water.
Performance of vacuum pump technology is vital for many industries. It is an integral part of many central production processes. However, it comes with certain expenses, including machines, installations, energy, and maintenance. This makes it essential to understand what to look for when purchasing a vacuum pump. It is important to understand the factors that can influence these factors, as they affect the efficiency of a vacuum pump.
Another important factor in determining the performance of a vacuum pump is throughput. Throughput is a measurement of how many molecules can be pumped per unit of time at a constant temperature. Moreover, throughput can also be used to evaluate volume leak rates and pressure at the vacuum side. In this way, the efficiency of a vacuum pump can be judged by the speed and throughput of its leaks.

Atmospheric pressure

Vacuum pumps work by sucking liquids or air into a container. The amount of vacuum a pump can create is measured in pressure units called atms (atmospheric pressure). The pressure of a vacuum pump is equal to the difference between atmospheric pressure and the pressure in the system.
The amount of force produced by air molecules on each other is proportional to the number of impacts. Therefore, the greater the impact, the higher the pressure. In addition, all molecules have the same amount of energy at any temperature. This holds true for both pure and mixture gases. However, lighter molecules will move faster than heavier ones. Nevertheless, the transfer of energy is the same for both.
The difference between atmospheric and gauge pressure is not always straightforward. Some applications use one term to describe the other. While the two concepts are closely related, there are key differences. In most cases, atmospheric pressure is a higher number than gauge pressure. As a result, it can be confusing when choosing a vacuum pump.
One method is to use a U-tube manometer, a compact device that measures the difference between atmospheric pressure and vacuum. This device is commonly used for monitoring vacuum systems. It can measure both negative and positive pressure. In addition, it uses an electronic version of a gauge.
The atmospheric pressure affects the performance of a vacuum pump. When working with porous materials, the pump must overcome leakage. As a result, it must be equipped with enough capacity to compensate for variations in the porosity of the work piece. This is why it is critical to buy a vacuum pump that has a large enough capacity to handle the variation.
Vacuum Pump

Typical application

Vacuum pumps are used in a variety of applications. They generate low and high pressures and are used to evaporate water or gases from various materials. They are also used in petroleum regeneration and re-refining processes. Typical applications of vacuum pumps include: a.
b. Rotary vane pumps are used in a variety of vacuum applications. They are suitable for industrial applications, freeze drying and cabinet making. They use oil as a sealant and coolant, allowing them to perform well in a variety of applications. This makes them ideal for use in a variety of industries.
The pumping rate of the vacuum pump is important. This refers to the volume pumped from a given point at a given rate. The higher the speed, the faster the pump will expel the air. Depending on the gas composition, this number will vary. When choosing a vacuum pump, gas composition and process requirements should be considered.
Vacuum pumps are used in a variety of industries from laboratories to medical facilities. In medical applications, they are used in radiation therapy and radiopharmaceuticals. They are also used in mass spectrometers, which are instruments used to analyze solid, liquid, or surface materials. Vacuum pumps are also used in decorative vacuum coatings and Formula 1 engine components. A trash compactor is another example of using a vacuum pump.
Vacuum pumps are used in a variety of applications including water purification and aeration. Vacuum pumps are also used in portable dental equipment and compressors in the dental industry. Vacuum pumps are also used in molds for dental implants. Other common applications for vacuum pumps include soil aeration and air sampling.

China Good quality Mobile Two Treys Diesel Engine Drive Vacuum Priming Well Point Water Pump   with Best Sales China Good quality Mobile Two Treys Diesel Engine Drive Vacuum Priming Well Point Water Pump   with Best Sales
editor by CX 2024-04-17

China best Roots Vacuum Pump with Water Ring Pump Rotary Vane Pump or Dry Pump as a Unit vacuum pump connector

Product Description

Product Description

Roots pump is a kind of vacuum pump without internal compression. It is a vacuum pump that realizes air extraction by moving gas under the pushing action of synchronous and reverse rotation of a pair of “8” shaped rotors in the pump cavity. Generally, the pumping rate is large and the power of the motor is small, so the front pump is required to pre pump. After the front pump reaches the specified vacuum degree, start the roots vacuum pump to improve the pumping speed and vacuum degree. Its structure and working principle are similar to roots blower. During operation, its suction is connected with the evacuated container or the main pump of vacuum system. There is no contact between rotors of Roots vacuum pump and between rotors and pump casing.

Our Advantages

The running parts in the pump have no friction, no lubrication, and there is no oil in the pump cavity, so a clean vacuum can be obtained.

2 leaf involute cycloid profile, high-precision machining to ensure smooth and quiet operation.

the gas in the pump chamber flows vertically, which is conducive to the discharge of dust and condensate in the pumped gas.

. The high-strength rotor with complete symmetry and precise dynamic balance operates stably and reliably.

high precision gear, imported bearing, low vibration and noise.

the new omni-directional three-dimensional water-cooling jacket design can effectively cool the pump body and greatly prolong the service life of the pump.

the overflow surface can be plated with shackles, Hastelloy and PTFE, which can adapt to corrosive environments with different strengths.

it is convenient to form roots vacuum unit with liquid ring vacuum pump, rotary vane vacuum pump and dry vacuum pump.

 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Product Parameters

Type Pumping Speed L/S Maximum allowable differential pressure (Pa) Pump Speed(RPM) Inlet Diameter(mm) Outlet Diameter(mm) Motor Power(kw)
ZJB-70 70 8000 2850 80 50 1.5
ZJB-150 150 6000 2850 100 80 3
ZJB-300 300 5000 2900 150 100 4
ZJB-600 600 4000 2900 200 150 5.5Z7.5
ZJ-1200 1200 3000 2900 250 200 11/15
ZJ-2500 2500 2600 2900 300 250 22
ZJ-3750 3750 2600 1450 350 350 30
ZJ-5000 5000 2600 1450 400 400 45

 

 

Detailed Photos

 

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

 New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

 High precision machining equipment

The company cooperates with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents. Adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

 

Product quality wins consumer cooperation

ISO9001
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Customization:
Available

|

roots vacuum pump

What Is the Significance of Roots Vacuum Pumps in the Aerospace Sector?

Roots vacuum pumps play a significant role in various applications within the aerospace sector. Here’s a detailed explanation:

1. Space Simulation Chambers:

– Vacuum Simulation: Roots vacuum pumps are utilized in space simulation chambers to create and maintain vacuum conditions similar to the space environment. These chambers are used to test and simulate the performance of aerospace components and systems under low-pressure conditions, including the effects of vacuum on materials, electronics, and mechanical systems.

– Thermal Vacuum Testing: Roots pumps are crucial in thermal vacuum testing, where aerospace components and systems are subjected to extreme temperature and vacuum conditions. The pumps help evacuate the test chamber and maintain the required vacuum level, enabling accurate thermal testing and evaluation of aerospace equipment’s performance and functionality in space-like conditions.

2. Propellant Handling and Storage:

– Rocket Engine Testing: Roots vacuum pumps are employed in rocket engine testing facilities for propellant handling and storage. They assist in creating a vacuum environment during the propellant loading and purging processes, ensuring the removal of air or contaminants from the propellant tanks and lines. This helps maintain the propellant’s quality and prevents potential issues, such as cavitation or gas bubble formation, that could affect engine performance.

– Fuel Systems: Roots pumps are used in aerospace fuel systems to evacuate and degas the fuel tanks, ensuring the removal of air or gas bubbles that may compromise fuel delivery and engine operation. These pumps contribute to the overall efficiency, reliability, and safety of fuel systems in aerospace vehicles.

3. Environmental Control Systems (ECS):

– Cabin Pressure Control: Roots vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft to help control cabin pressure. By creating a vacuum or adjusting the air circulation, these pumps assist in maintaining the desired cabin pressure levels, ensuring passenger comfort, and providing a safe and controlled environment during flight.

4. Avionics and Electronics:

– Electronic Component Testing: Roots vacuum pumps are employed in the testing and validation of avionics and electronic components used in aerospace applications. These pumps assist in creating a controlled vacuum environment during testing, allowing engineers to evaluate the performance, reliability, and durability of electronic systems under low-pressure conditions.

– Vacuum Encapsulation: In certain aerospace applications, electronic components or circuits may require vacuum encapsulation for protection against harsh environmental conditions, including high altitude, temperature variations, or moisture. Roots vacuum pumps are utilized to create the necessary vacuum environment for the encapsulation process, ensuring the integrity and longevity of sensitive electronics.

5. Space Propulsion Systems:

– Ion Thrusters and Electric Propulsion: Roots vacuum pumps are integral components of ion thrusters and electric propulsion systems used in spacecraft. These pumps aid in the creation and maintenance of the high vacuum conditions required for the operation of these advanced propulsion technologies. They contribute to the efficient exhaust gas removal, ensuring optimal thrust generation and fuel efficiency.

6. Satellite Manufacturing and Testing:

– Satellite Chamber Evacuation: Roots vacuum pumps are utilized in satellite manufacturing and testing facilities for the evacuation of satellite chambers. These pumps help create the required vacuum conditions during satellite assembly, testing, and payload integration, ensuring the cleanliness, functionality, and performance of satellite systems and instruments.

In summary, Roots vacuum pumps have significant significance in the aerospace sector. They are utilized in space simulation chambers, propellant handling and storage, environmental control systems, avionics and electronics testing, space propulsion systems, and satellite manufacturing and testing. By creating and maintaining vacuum conditions, Roots pumps contribute to the performance, reliability, and safety of aerospace components, systems, and vehicles. They play a vital role in supporting space exploration, satellite communication, and the advancement of aerospace technologies.

roots vacuum pump

Are Roots Vacuum Pumps Used in Industrial Applications?

Yes, Roots vacuum pumps are widely used in various industrial applications. Here’s a detailed explanation of their application in industrial settings:

1. Chemical Processing: Roots vacuum pumps find extensive use in the chemical processing industry. They are employed for processes such as vacuum distillation, solvent recovery, drying, and degassing. Their high pumping speed and ability to handle corrosive gases make them suitable for handling various chemical vapors and byproducts.

2. Pharmaceuticals: In the pharmaceutical industry, Roots vacuum pumps are utilized for applications such as vacuum drying, tablet coating, freeze drying, and vacuum packaging. Their oil-free operation ensures a clean and contaminant-free vacuum environment, which is crucial for pharmaceutical manufacturing processes.

3. Food Processing: Roots vacuum pumps play a significant role in the food processing industry. They are employed for vacuum packaging, vacuum cooling, and vacuum drying of food products. The oil-free operation of Roots vacuum pumps ensures food safety and eliminates the risk of contamination.

4. Environmental Technology: Roots vacuum pumps are utilized in environmental technology applications, including wastewater treatment, biogas processing, and air pollution control. They are employed to extract gases, control emissions, and facilitate the treatment and purification of air and water.

5. Semiconductor Manufacturing: In the semiconductor industry, Roots vacuum pumps are used for processes such as ion implantation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. Their high pumping speed and oil-free operation are crucial for maintaining clean vacuum conditions required in semiconductor fabrication.

6. Packaging and Printing: Roots vacuum pumps are employed in packaging and printing applications. They are used for vacuum packaging of products, vacuum forming of packaging materials, and in printing presses for paper handling and ink transfer.

7. Automotive Industry: Roots vacuum pumps find application in the automotive industry for processes such as brake system vacuum assist, crankcase ventilation, and emissions control systems. They help create vacuum conditions required for the operation of various automotive systems.

8. Research and Laboratory: Roots vacuum pumps are utilized in research laboratories and scientific facilities for a wide range of applications. They are used in vacuum ovens, freeze dryers, vacuum filtration, electron microscopy, surface analysis, and other laboratory processes that require controlled vacuum environments.

9. Energy Industry: In the energy sector, Roots vacuum pumps are used for applications such as steam turbine condenser air extraction, transformer drying, and vacuum impregnation of electrical components. They help maintain proper vacuum conditions for efficient and reliable operation of energy systems.

These are just a few examples of the industrial applications where Roots vacuum pumps are commonly used. Their high pumping speed, large gas handling capacity, oil-free operation, reliability, and versatility make them suitable for a wide range of industrial processes that require efficient and reliable vacuum generation.

China best Roots Vacuum Pump with Water Ring Pump Rotary Vane Pump or Dry Pump as a Unit   vacuum pump connector	China best Roots Vacuum Pump with Water Ring Pump Rotary Vane Pump or Dry Pump as a Unit   vacuum pump connector
editor by CX 2024-04-17