Tag Archives: pump screw

China wholesaler Roots Liquid-Ring Water Piston Rotary Vane Dry Portable Screw Scroll Reciprocating Diaphragm Positive Displacement Industrial Air Small Centrifugal Vacuum Pump vacuum pump and compressor

Product Description

Roots Liquid-ring water piston Rotary vane Dry portable Screw scroll Reciprocating diaphragm  positive displacement industrial air small centrifugal vacuum pump

Application of vacuum pump

Vacuum pumps are used in a wide variety of applications, including:

  • Industrial: Vacuum pumps are used in a variety of industrial applications, such as food processing, material handling, and packaging.
  • Scientific: Vacuum pumps are used in a variety of scientific applications, such as electron microscopy, mass spectrometry, and vacuum chambers.
  • Medical: Vacuum pumps are used in a variety of medical applications, such as surgery, wound care, and blood collection.
  • Domestic: Vacuum pumps are used in a variety of domestic applications, such as vacuum cleaners, food dehydrators, and wine preservation systems.

Vacuum pumps work by removing air and other gases from a chamber. This can be done in a variety of ways, but the most common method is to use a rotating impeller that creates a vacuum.

The benefits of using a vacuum pump include:

  • Reduced pressure: Vacuum pumps can reduce the pressure in a chamber, which can be useful for a variety of applications.
  • Improved air quality: Vacuum pumps can remove dust, dirt, and other particles from the air, which can improve air quality.
  • Increased efficiency: Vacuum pumps can improve the efficiency of a variety of processes, such as food processing and material handling.
  • Reduced costs: Vacuum pumps can reduce the costs of a variety of processes, such as food processing and material handling.

The disadvantages of using a vacuum pump include:

  • Noise: Vacuum pumps can be noisy, especially at high speeds.
  • Vibration: Vacuum pumps can vibrate, especially at high speeds.
  • Cost: Vacuum pumps can be expensive, especially for large and high-powered models.

Overall, vacuum pumps are a versatile and reliable component that can be used in a wide variety of applications. They offer a number of advantages, including reduced pressure, improved air quality, increased efficiency, and reduced costs. However, they also have some disadvantages, such as noise and vibration.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Installation Guide 1-Year Warranty
Warranty: Installation Guide 1-Year Warranty
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

roots vacuum pump

Can Roots Vacuum Pumps Be Used for Vacuum Impregnation in Manufacturing?

Yes, Roots vacuum pumps can be used for vacuum impregnation in manufacturing. Here’s a detailed explanation:

1. Vacuum Impregnation in Manufacturing: Vacuum impregnation is a process used in manufacturing to fill porous materials or components with a liquid or resin. It is commonly employed to enhance the properties of materials by improving their strength, sealing capability, or resistance to chemicals or corrosion. The process involves placing the porous material in a vacuum chamber and removing the air or gas trapped within its pores. Once a vacuum is established, a liquid or resin is introduced, and the vacuum is released, allowing the material to absorb the impregnating substance.

2. Role of Roots Vacuum Pumps: Roots vacuum pumps play a crucial role in the vacuum impregnation process by creating and maintaining the required vacuum conditions. Here’s how they contribute:

– Evacuation: Roots pumps are used to evacuate the impregnation chamber, removing the air and gas from within the pores of the porous material. By creating a vacuum, the trapped gases are extracted, creating a void space for the impregnating substance to penetrate.

– Pressure Control: Roots pumps help control the pressure within the impregnation chamber during different stages of the process. They can rapidly achieve and maintain the desired vacuum level, ensuring proper impregnation of the material and preventing the formation of air bubbles or voids.

– Gas Removal: Roots pumps effectively remove gases released from the impregnating substance during the impregnation process. As the liquid or resin fills the pores of the porous material, gases may be released due to the reaction or outgassing. The vacuum pump evacuates these gases, preventing their accumulation and ensuring complete impregnation.

3. Advantages of Roots Vacuum Pumps for Vacuum Impregnation:

– High Pumping Speed: Roots vacuum pumps have a high pumping speed, enabling rapid evacuation of the impregnation chamber. This reduces the overall impregnation cycle time, increasing manufacturing throughput and efficiency.

– Large Volume Handling: Roots pumps are capable of handling large volumes of gas, allowing them to evacuate chambers of different sizes effectively. This is advantageous when impregnating large or complex-shaped components that require a significant amount of impregnating substance.

– Continuous Operation: Roots pumps can operate continuously, maintaining the vacuum conditions required for impregnation throughout the process. This ensures consistent impregnation results and reduces the risk of incomplete impregnation or material defects.

– Compatibility with Impregnating Substances: Roots vacuum pumps are compatible with a wide range of impregnating substances, including resins, oils, solvents, and other liquids. They can handle different chemical compositions and provide a clean and efficient environment for the impregnation process.

4. Considerations for Vacuum Impregnation:

– Material Compatibility: It is essential to consider the compatibility of the porous material with the impregnating substance and the impregnation process itself. Some materials may require pre-treatment or surface preparation before impregnation. The choice of impregnating substance should also align with the material’s properties and intended application.

– Process Parameters: Vacuum impregnation involves controlling various process parameters, such as vacuum level, impregnation time, pressure release, and curing conditions. These parameters may vary depending on the material, impregnating substance, and desired impregnation results. Proper process optimization and control are crucial for achieving consistent and reliable impregnation outcomes.

– System Design: The design of the vacuum impregnation system should consider factors such as chamber size, gas flow rates, vacuum pump capacity, and pressure control mechanisms. Proper system design ensures efficient operation, reliable vacuum conditions, and effective impregnation of the porous material.

In summary, Roots vacuum pumps are well-suited for vacuum impregnation in manufacturing. Their high pumping speed, large volume handling capability, continuous operation, and compatibility with impregnating substances make them effective in creating and maintaining the required vacuum conditions for successful impregnation. By considering material compatibility, process parameters, and system design, Roots vacuum pumps contribute to the efficient and reliable impregnation of porous materials in various manufacturing applications.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China wholesaler Roots Liquid-Ring Water Piston Rotary Vane Dry Portable Screw Scroll Reciprocating Diaphragm Positive Displacement Industrial Air Small Centrifugal Vacuum Pump   vacuum pump and compressor	China wholesaler Roots Liquid-Ring Water Piston Rotary Vane Dry Portable Screw Scroll Reciprocating Diaphragm Positive Displacement Industrial Air Small Centrifugal Vacuum Pump   vacuum pump and compressor
editor by CX 2024-04-13

China Hot selling Customizable Screw Vacuum Pumps with Air Cooling System for Electronics Industry vacuum pump ac system

Product Description

Internal Structure


Technical Specifications

Component Details

High-efficiency Permanent Magnet Motor
Insulation grade F, protective grade IP55, soft start operation, stable flow rate. The constant torque range and weak magnetic range are wider, The efficiency of the permanent magnet motor is higher by 20-30% than that of the regular motor.

Integrated Frequency Converter
Adopt the top frequency system in China, with a wide range of speed regulation, and high precision. Quality stability, to ensure that the pressure transmitter signal is transmitted.

Smart Touch Controller
Superior built-in intelligence requires minimal manual operation. A high-precision color electronic screen, clear graphics display, and indication of maintenance information, fault alarms, and safety shutdown alarms.

Special Type Intake Valve
Automatic control of the opening, to ensure the engine fuel injection and lubricating oil circulation.
Ultra-low oil circuit loss, overall efficiency improvement.
Normally open solenoid valve control, emergency stop automatically closed, prevent oil injection.

Cooling System
Large heat exchange area design effectively prevents high-temperature machines and reduces oil emulsification and coking caused by high-temperature.

Excellent Air Filter
An air filter with excellent air purification capability ensures a clean air system and three-stage filtration to maximize air purification and meet standard emissions. It can remove a lot of steam and a small amount of dust gas occasions, the ultimate vacuum is up to 1 Pa.

Reliable Oil and Air Separator
Vertical tangential cyclone separation structure, complete separation of oil and air, easy replacement of cartridge, and reduced maintenance cost.

High-Quality Soundproof Cotton
Compact noise reduction housing, achieving no vibration amplitude during operation, cooperates with high-quality soundproof cotton to further improve noise reduction levels.

Iron Oil Pipe & Air Pipe System
Iron is resistant to high temperature, low temperature, and high pressure, suitable for bad working conditions, completely leak-free, and maintenance-free.

Sanzhi Screw Vacuum Pump VS Water Ring Pump

Features of Vacuum Pump

Multiple filtration
Three-stage filtration minimizes air impurities.

Energy saving
Saves 50-60% of electricity compared to traditional vacuum pumps.

Constant pressure
Constant speed pumping, solving the problem of unstable vacuum pumping.

Higher vacuum degree
The vacuum degree of the vacuum pump on the market is -0.07Mpa, our vacuum degree is -0.098Mpa.

Easy use
Simple structure, easy to install, operate, and maintain.

Packaging&Shipping

Our Advantages
 

1. Price advantage

Direct to provide customers with ex-factory prices, so that customers are more competitive.

2. Direct deal
All products are supplied directly from the factory and we will offer more cost-effective products.

3. OEM & ODM services
The strong production and management capacity of the factory can provide OEM/ODM service for you.

4. Customised service
We accept non-standard orders, export orders, voltage/power/pressure, etc, which can be customized. If you have demands, please contact us.

5. Accept small order
You can place a small trial order first to test the quality of our products.

6. Fast delivery
High-quality products with timely delivery.

7. Complete authorisation
For distributors, we can provide the full authorization certificate to allow you to sell our SANZHI brand products.

ABOUT US
Sanzhi (ZheJiang ) Compressor Co., Ltd is a specialist in the production of screw air compressors and screw vacuum pumps. The extensive product range includes normal pressure/low-pressure screw air compressors, permanent magnet frequency conversion screw air compressors, two-stage compression screw air compressors, screw air compressors for laser cutting, single-tank mobile screw air compressors, double-tank mobile screw air compressor, electric mobile screw air compressor, diesel mobile screw air compressor, screw vacuum pump, etc.

Our factory is located in HangZhou City, ZheJiang Province, China. We can pick you up from HangZhou International Airport to our factory, 30 kilometers in about 1 hour. Welcome to our company!

Application industry
The items are widely used in wood processing, ceramic processing, printing processing, plastic processing, food packaging, semiconductor materials, pharmaceutical industry, PET blowing industry, petrochemical industry, rubber industry, iron and steel industry, mining industry, spraying industry, tobacco industry, foam factories, brick factories, electronic factories, marine exploration, hydroelectric power stations, ships, military industries and so on.

Successful cases

FAQ
Q1. Are you a trading company or manufacturer?
A: We are a professional manufacturer of screw vacuum pumps, with more than 10 years of experience.

Q2. How do you control quality?
A: 1. The raw materials are strictly inspected.
  2. Installation procedures are strictly controlled.
  3. Each machine must pass at least 5 hours of continuous testing before leaving the factory.

Q3. What information must I provide to get a suitable machine?
1. How much air delivery capacity (Unit: CFM or m³/Min)
2. How much working pressure (Unit: PSI, Bar or Mpa)
3. What is the voltage and frequency of my country of residence (V/Hz)
4. Whether I need other accessories such as an air tank, filters, and/or air dryers.
Tell us the answer, we will offer a scheme for you!

Q4. What is the general unit conversion?
1Bar = 0.1Mpa = 14.5PSI
1m³/min = 35.32cfm
1KW = 1.34HP

Q5. What is the available voltage vacuum pump?
A: Sanzhi available voltage include 380v/50hz/3p, 400v/50hz/3p, 415v/50hz/3p, 220v/60hz/3p, 440v/60hz/3p, and can be customized according to your requirements.

Q6. How long is the delivery time?
A: For standard voltage,15 working days after the confirmed order. Non-standard, please contact our sales.

Q7. What’s the payment term?
A: 30% T/T in advance, 40% T/T before shipment, and 30% T/T against the B/L copy. USD and RMB can be accepted.

Q8. How about your warranty?
A: One year for the whole machine and 2 years for screw vacuum pump, except for consumable spare parts.

Q9. What about the maintenance?
A: First maintenance needs to be done after 500 hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

Q10. Can machines be run in high-temperature environment?
A: Yes, machines would run in high-temperature environment countries. Working temperature from -20° to 45°(-4ºF-113ºF).

Q11. Do you offer OEM service?
A: Yes, with a professional design team, both OEM & ODM orders are highly welcome.

Q12. How long could your vacuum pump be used?
A: Generally, more than 10 years.

Q13. Will you provide some spare parts for the machines?
A: Yes, of course.

Q14. How about your after-sales service?
A: Provide customers with installation and commissioning online instructions, and arrange our engineers to help you with training and installation.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technology Support
Warranty: 1 Year, 2 Year
Oil or Not: Oil
Structure: Screw Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Samples:
US$ 15000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

How Do Vacuum Pumps Impact the Quality of 3D Printing?

Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:

3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:

1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.

2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.

3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.

4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.

5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.

6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.

7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.

In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.

vacuum pump

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China Hot selling Customizable Screw Vacuum Pumps with Air Cooling System for Electronics Industry   vacuum pump ac system	China Hot selling Customizable Screw Vacuum Pumps with Air Cooling System for Electronics Industry   vacuum pump ac system
editor by CX 2024-04-03

China Professional Roots Vacuum Pump with Compressor, Screw Pumps, Oil-Less Piston a/c vacuum pump

Product Description

 

Product Description

Roots pump is a kind of vacuum pump without internal compression. It is a vacuum pump that realizes air extraction by moving gas under the pushing action of synchronous and reverse rotation of a pair of “8” shaped rotors in the pump cavity. Generally, the pumping rate is large and the power of the motor is small, so the front pump is required to pre pump. After the front pump reaches the specified vacuum degree, start the roots vacuum pump to improve the pumping speed and vacuum degree. Its structure and working principle are similar to roots blower. During operation, its suction is connected with the evacuated container or the main pump of vacuum system. There is no contact between rotors of Roots vacuum pump and between rotors and pump casing.

Our Advantages

The running parts in the pump have no friction, no lubrication, and there is no oil in the pump cavity, so a clean vacuum can be obtained.

two leaf involute cycloid profile, high-precision machining to ensure smooth and quiet operation.

the gas in the pump chamber flows vertically, which is conducive to the discharge of dust and condensate in the pumped gas.

. The high-strength rotor with complete symmetry and precise dynamic balance operates stably and reliably.

high precision gear, imported bearing, low vibration and noise.

the new omni-directional three-dimensional water-cooling jacket design can effectively cool the pump body and greatly prolong the service life of the pump.

the overflow surface can be plated with shackles, Hastelloy and PTFE, which can adapt to corrosive environments with different strengths.

it is convenient to form roots vacuum unit with liquid ring vacuum pump, rotary vane vacuum pump and dry vacuum pump.

 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Product Parameters

Type Pumping Speed L/S Maximum allowable differential pressure (Pa) Pump Speed(RPM) Inlet Diameter(mm) Outlet Diameter(mm) Motor Power(kw)
ZJB-70 70 8000 2850 80 50 1.5
ZJB-150 150 6000 2850 100 80 3
ZJB-300 300 5000 2900 150 100 4
ZJB-600 600 4000 2900 200 150 5.5Z7.5
ZJ-1200 1200 3000 2900 250 200 11/15
ZJ-2500 2500 2600 2900 300 250 22
ZJ-3750 3750 2600 1450 350 350 30
ZJ-5000 5000 2600 1450 400 400 45

 

 

Detailed Photos

Vacuum pump is used in the field of chemical and pharmaceutical factory

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

Product quality wins consumer cooperationIn shipmentISO 9001High tech enterprise certificate

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifetime Paid Service
Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

roots vacuum pump

How Are Roots Vacuum Pumps Utilized in the Automotive Industry?

Roots vacuum pumps play a significant role in various applications within the automotive industry. Here’s a detailed explanation:

1. Brake System Vacuum Pumps:

– Vacuum Boosters: Roots vacuum pumps are commonly used as vacuum boosters in automotive brake systems. They assist in enhancing the braking performance by providing the necessary vacuum for power brake operation. When the driver applies the brake pedal, the vacuum booster uses the suction power generated by the Roots pump to amplify the force applied to the brake master cylinder, resulting in more effective braking.

– Electric Brake Vacuum Pumps: In modern electric or hybrid vehicles, where traditional engine-driven vacuum sources may not be available, electric brake vacuum pumps are utilized. These pumps, often based on the Roots principle, generate vacuum independently to power the brake booster and ensure reliable braking performance.

2. Emissions Control:

– Evaporative Emission Control: Roots vacuum pumps are employed in evaporative emission control systems to prevent the release of harmful vapors from the fuel system into the atmosphere. These pumps create a vacuum within the system, purging and storing fuel vapors in a canister for subsequent combustion or recycling.

– Positive Crankcase Ventilation (PCV): PCV systems, which are designed to reduce emissions and maintain the integrity of the engine, also utilize Roots vacuum pumps. These pumps draw crankcase gases and vapors, including oil mist, from the engine’s crankcase into the intake manifold for combustion, improving overall engine efficiency and reducing pollution.

3. Engine Testing and Development:

– Vacuum Leakage Testing: Roots vacuum pumps are utilized for vacuum leakage testing in engine manufacturing and development. By creating a vacuum in the intake manifold or other engine components, these pumps enable the detection of leaks and ensure the integrity of the engine’s air delivery system.

– Air Flow Calibration: During engine testing and calibration, Roots vacuum pumps are used to simulate various operating conditions by controlling the intake air flow. This allows engineers to fine-tune the engine’s performance, optimize fuel-air mixture ratios, and assess the engine’s efficiency and emissions characteristics.

4. HVAC Systems:

– Climate Control: Roots vacuum pumps are employed in automotive HVAC (Heating, Ventilation, and Air Conditioning) systems to facilitate the flow and distribution of air. These pumps help regulate the operation of HVAC components, such as air blend doors and vacuum actuators, ensuring proper air temperature and direction control inside the vehicle cabin.

5. Fuel System and Turbocharging:

– Fuel Transfer and Evacuation: In automotive fuel systems, Roots vacuum pumps are used for fuel transfer and evacuation. These pumps assist in priming the fuel system, removing air pockets, and ensuring the continuous flow of fuel to the engine, enhancing the overall fuel delivery performance.

– Turbocharger Control: Roots vacuum pumps are sometimes employed in turbocharged engines to control the actuation of variable geometry turbochargers (VGT). These pumps provide the necessary vacuum signals to actuate the VGT mechanism, optimizing turbocharger performance and enhancing engine efficiency.

6. Other Applications:

– Electric Vehicle Battery Systems: In electric vehicles, Roots vacuum pumps are utilized to create a vacuum in battery enclosures, helping to maintain the integrity and safety of the battery system by preventing the ingress of moisture, dust, or contaminants.

– Engine Air Induction: Some automotive engines utilize Roots-type superchargers or twin-screw superchargers, which are essentially positive displacement Roots vacuum pumps operating in reverse. These devices compress and force air into the engine’s intake manifold, resulting in increased engine power and performance.

In summary, Roots vacuum pumps find extensive utilization in the automotive industry. They play a crucial role in brake systems, emissions control, engine testing and development, HVAC systems, fuel systems, turbocharging, electric vehicle battery systems, and engine air induction. By contributing to braking performance, emissions reduction, engine calibration, HVAC functionality, fuel system efficiency, turbocharger control, battery system safety, and engine power enhancement, Roots vacuum pumps contribute significantly to the overall operation and performance of automotive systems and components.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China Professional Roots Vacuum Pump with Compressor, Screw Pumps, Oil-Less Piston   a/c vacuum pump		China Professional Roots Vacuum Pump with Compressor, Screw Pumps, Oil-Less Piston   a/c vacuum pump
editor by CX 2024-03-30

China Custom High Vacuum Pump Dry Screw Roots Vacuum Unit Pump for Sale vacuum pump oil

Product Description

High Vacuum Pump Dry Screw Roots Vacuum Unit Pump for Sale

Product introduction

Single screw pumps can be used for conveying single or multiple media fluids, including neutral or corrosive, clean or abrasive, gas-containing or bubble-prone, high-viscosity or low-viscosity, as well as liquids containing fibers or CHINAMFG particles, which are widely used in various industrial sectors.

Performance Parameter Table

Model Flow rate(m’/h) Lift (m) Presuure (MPa) Rotary rate(r /min) Motor power (kW) Inlet (mm) Outlet (mm)
G25-1 2 60 0.6 960 1.5 Dg32 Dg25
G25-2 2 120 1.2 2.2 Dg32 Dg25
G30-1 5 60 0.6 2.2 Dg50  Dg40
G30-2 5 120 12 3.0 Dg50  Dg40
G35-1 8 60 0.6 3.0 Dg65 Dg50
G35-2 8 120 12 4.0 Dg65  Dg50
040-1 12 60 06 4.0 Dg80 Dg65
G40-2 12 120 12 55 Dg80  Dg65
G50-1 20 60 0.6 55 Dg100 Dg80
G50-2 20 120 12 75 Dg100 Dg80
G60-1 30 60 0.6 11 Dg125 Dq100
G60-2 30 120 12 15 Dg125 Dg100
G70-1 45 60 0.6 15 Dg150 Dg125

Working principle
Screw pump is a propulsive volumetric pump, the main components are the rotor and stator, the rotor is a large lead and a large tooth height and a small spiral inner diameter of the screw (rotor) stator is matched with the double screw thread and the screw sleeve, so that between the rotor and the stator formed the storage medium space, when the rotor is running in the stator, the medium along the axial from the suction end of the discharging movement.

Performance Parameter Table

Model L1 L2 L3 L4 L5 H H1 B B1  
G25-1 100 400 400 315 1130 150 250 160 180 14X6
571-2 95 455 485 450 1270 160 265 160 180 14X6
G30-1 90 540 545 400 1265 200 325 200 200 16X6
G30-2 100 560 570 550 1520 210 335 200 240 16×6
G35-1 100 475 525 440 1400 210 330 200 240 16×6
G35-2 100 580 640 620 1610 215 340 200 240 16×6
G40-1 100 615 685 500 1700 220 340 210 240 16×6
G40-2 110 620 664 715 1925 230 350 210 240 18×6
G50-1 110 620 634 650 1750 230 365 220 240
G50-2 110 730 750 735 1975 240 380 230 295
G60-1 120 690 690 600 1850 250 415 240 295
G60-2 120 810 820 940 2180 255 420 260 320
G70-1 120 720 730 780 1995 275 450 280 320 20×6

Advantages

Compared with the centrifugal pump, screw pump does not need to install valves. Its flow is stable and linear.
Compared with the plunger pump, screw pump has strong self suction capacity and high suction height.
Compared with diaphragm pump, screw pump can transport various mixed impurities containing gas, CHINAMFG particles or fiber media, and can also transport various corrosive substances.
Compared with gear pump, screw pump can transport substances with high viscosity.
Unlike plunger pump, diaphragm pump and gear pump, screw pump can be used for reagent filling and metering.

Application areas
1Dirt treatment: sewage, dirty oil, sludge containing solids and all kinds of chemicals.
2Chemical industry: acid, alkali, salt, a variety of viscous pasty emulsion chemical slurry, molding ointment, dyes, pigments, inks, paints.
3Energy industry: a variety of fuel oil (oil, crude oil, diesel fuel) oil and coal, water, coal slurry, coal sludge and nuclear waste.
4Paper industry: a variety of cellulose and pulp, paint, black liquid treatment, etc.
5Ceramic industry: china clay, refractory clay, glaze, bentonite, silica.
6exploration and mining: all kinds of drilling mud, tunneling, oil, water, concrete multi-phase mixed transport.
7Pharmaceuticals, food, cosmetic industry, all kinds of syrup, jam, starch paste, paste, hops, mashed potatoes, alcohol, chocolate and so on.

Related product

Company profile

Recommended product

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Screw Number: Single Screw Pump
Screw Suction Method: Single Suction
Pump Shaft Position: Horizontal
Performance: No Leak
Customization:
Available

|

roots vacuum pump

How Are Roots Vacuum Pumps Utilized in the Automotive Industry?

Roots vacuum pumps play a significant role in various applications within the automotive industry. Here’s a detailed explanation:

1. Brake System Vacuum Pumps:

– Vacuum Boosters: Roots vacuum pumps are commonly used as vacuum boosters in automotive brake systems. They assist in enhancing the braking performance by providing the necessary vacuum for power brake operation. When the driver applies the brake pedal, the vacuum booster uses the suction power generated by the Roots pump to amplify the force applied to the brake master cylinder, resulting in more effective braking.

– Electric Brake Vacuum Pumps: In modern electric or hybrid vehicles, where traditional engine-driven vacuum sources may not be available, electric brake vacuum pumps are utilized. These pumps, often based on the Roots principle, generate vacuum independently to power the brake booster and ensure reliable braking performance.

2. Emissions Control:

– Evaporative Emission Control: Roots vacuum pumps are employed in evaporative emission control systems to prevent the release of harmful vapors from the fuel system into the atmosphere. These pumps create a vacuum within the system, purging and storing fuel vapors in a canister for subsequent combustion or recycling.

– Positive Crankcase Ventilation (PCV): PCV systems, which are designed to reduce emissions and maintain the integrity of the engine, also utilize Roots vacuum pumps. These pumps draw crankcase gases and vapors, including oil mist, from the engine’s crankcase into the intake manifold for combustion, improving overall engine efficiency and reducing pollution.

3. Engine Testing and Development:

– Vacuum Leakage Testing: Roots vacuum pumps are utilized for vacuum leakage testing in engine manufacturing and development. By creating a vacuum in the intake manifold or other engine components, these pumps enable the detection of leaks and ensure the integrity of the engine’s air delivery system.

– Air Flow Calibration: During engine testing and calibration, Roots vacuum pumps are used to simulate various operating conditions by controlling the intake air flow. This allows engineers to fine-tune the engine’s performance, optimize fuel-air mixture ratios, and assess the engine’s efficiency and emissions characteristics.

4. HVAC Systems:

– Climate Control: Roots vacuum pumps are employed in automotive HVAC (Heating, Ventilation, and Air Conditioning) systems to facilitate the flow and distribution of air. These pumps help regulate the operation of HVAC components, such as air blend doors and vacuum actuators, ensuring proper air temperature and direction control inside the vehicle cabin.

5. Fuel System and Turbocharging:

– Fuel Transfer and Evacuation: In automotive fuel systems, Roots vacuum pumps are used for fuel transfer and evacuation. These pumps assist in priming the fuel system, removing air pockets, and ensuring the continuous flow of fuel to the engine, enhancing the overall fuel delivery performance.

– Turbocharger Control: Roots vacuum pumps are sometimes employed in turbocharged engines to control the actuation of variable geometry turbochargers (VGT). These pumps provide the necessary vacuum signals to actuate the VGT mechanism, optimizing turbocharger performance and enhancing engine efficiency.

6. Other Applications:

– Electric Vehicle Battery Systems: In electric vehicles, Roots vacuum pumps are utilized to create a vacuum in battery enclosures, helping to maintain the integrity and safety of the battery system by preventing the ingress of moisture, dust, or contaminants.

– Engine Air Induction: Some automotive engines utilize Roots-type superchargers or twin-screw superchargers, which are essentially positive displacement Roots vacuum pumps operating in reverse. These devices compress and force air into the engine’s intake manifold, resulting in increased engine power and performance.

In summary, Roots vacuum pumps find extensive utilization in the automotive industry. They play a crucial role in brake systems, emissions control, engine testing and development, HVAC systems, fuel systems, turbocharging, electric vehicle battery systems, and engine air induction. By contributing to braking performance, emissions reduction, engine calibration, HVAC functionality, fuel system efficiency, turbocharger control, battery system safety, and engine power enhancement, Roots vacuum pumps contribute significantly to the overall operation and performance of automotive systems and components.

roots vacuum pump

How Do Roots Vacuum Pumps Differ from Other Types of Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, have distinct characteristics that set them apart from other types of vacuum pumps. Here’s a detailed explanation of the differences between Roots vacuum pumps and other common types of vacuum pumps:

1. Operating Principle: Roots vacuum pumps operate based on the principle of positive displacement. They use synchronized rotating lobes to trap and compress gas, resulting in the creation of a pressure differential that generates vacuum. Other types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, and diffusion pumps, operate on different principles, such as rotor rotation, liquid sealing, or molecular diffusion.

2. Pumping Mechanism: Roots vacuum pumps are non-contacting pumps, meaning there is no physical contact between the lobes or between the lobes and the housing. This eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system. In contrast, many other types of vacuum pumps rely on a sealing mechanism that involves physical contact between moving parts, requiring lubrication to maintain proper operation.

3. Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can remove gas from a vacuum system. They excel at handling large volumes of gas efficiently. This makes Roots vacuum pumps suitable for applications that require rapid evacuation or continuous extraction of gases. Other types of vacuum pumps may have different pumping speeds depending on their design and intended applications.

4. Vacuum Level: While Roots vacuum pumps are efficient at generating rough vacuum levels, typically in the range of 10 to 1,000 mbar, they are not capable of achieving high vacuum levels on their own. They are often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in hybrid or combination pumping systems to achieve higher vacuum levels. In contrast, other types of vacuum pumps, such as turbomolecular pumps or cryogenic pumps, are designed specifically for achieving and maintaining high vacuum levels.

5. Gas Handling: Roots vacuum pumps have a large gas handling capacity and can handle a wide range of gases, including clean air, corrosive gases, and vapors. Their robust construction and ability to handle gas with particulates or liquids make them suitable for applications in various industries. Other types of vacuum pumps may have limitations in terms of the types of gases they can handle or may require additional equipment or treatments to handle specific gases.

6. Applications: Roots vacuum pumps find applications in a wide range of industrial processes, including chemical processing, pharmaceuticals, food processing, environmental technology, semiconductor manufacturing, packaging, and research laboratories. Other types of vacuum pumps, such as turbomolecular pumps, cryogenic pumps, or scroll pumps, may be more commonly used in specific industries or applications where their unique operating principles or capabilities are advantageous.

It’s important to note that the selection of a vacuum pump depends on various factors, including the desired vacuum level, gas composition, pumping speed requirements, application-specific considerations, and budget constraints. Different types of vacuum pumps offer distinct advantages and are chosen based on the specific requirements of the application.

In summary, Roots vacuum pumps differ from other types of vacuum pumps in terms of their operating principle, pumping mechanism, pumping speed, vacuum level capabilities, gas handling capacity, and applications. Understanding these differences helps in selecting the most suitable vacuum pump for a particular industrial process or application.

China Custom High Vacuum Pump Dry Screw Roots Vacuum Unit Pump for Sale   vacuum pump oil	China Custom High Vacuum Pump Dry Screw Roots Vacuum Unit Pump for Sale   vacuum pump oil
editor by CX 2024-03-28

China manufacturer 5 PA 354m3/H 7.5kw Pumping Ethanol Ethyl Alcohol Dry Screw Vacuum Pump manufacturer

Product Description

 

Working principle

The vacuum in dry screw pumps is created through 2 parallel-arranged screw rotors that rotate in opposite directions. These rotors trap the gas coming in through the inlet and deliver it to the gas discharge or pressure side. As the gas is getting compressed, there is no contact between the rotors. This does away with any need for the compression chamber to have any operating fluids or lubrication.
 The lubricant used to lubricate the gears and shaft seal is sealed in the gearbox by the shaft seal. The pump can be cooled either directly by circulating cooling water or by a cooling unit with fan and radiator.
The dry screw vacuum pump adopts a special rotor pitch design, compared with the ordinary rotor pitch design, reduce the energy consumption by about 30%, the temperature rise of the exhaust end is reduced by about 100 ºC, the reliability and stability of the operation of the product is greatly improved, can be suitable for any working conditions of vacuum.
The dry screw pumps can be widely used in solvent recovery, vacuum drying, concentration, crystallization, distillation and other processes in the chemical and pharmaceutical industries, vacuum extrusion and molding in the plastic and rubber industries, vacuum degassing in the metallurgical industry; vacuum degassing and drying in the solar energy, microelectronics, lithium battery and other industries.

Pump body and end caps:  high-strength cast iron.
Pump body and end caps:  high strength cast iron.
Screw rotor:                        ductile cast iron.
Anti-corrosion coating:        corrosion-resistant Hastelloy.
Synchronous gears:            alloy steel.
Radial lip seal:                     imported PTFE mixture or
                                            high-temperature resistant fluorine rubber;
Seal bushings:                    stainless steel surface covered with ceramic.

Flow chart

 

Main features

1. The screw rotor is designed with variable pitch structure, the ultimate vacuum can reach below 1Pa, which can meet all kinds of vacuum processing from atmosphere to high vacuum.
2. Oil free – Adapt to various special working conditions for reliable use.
3. It can operate reliably in the pressure range from atmosphere to several Pa.
4. No friction between moving parts, simple structure, lower operation and maintenance cost.
5. Nitrogen seal and composite seal design is optional, which has the benefit of good reliability, low cost of use, simple maintenance.
6. The rotor is dynamically balanced at high speed and the motor is connected by flange, with high concentricity, low vibration and low noise.
7. Hastelloy anti-corrosion coating is optional for rotor surface, condensable material is not easy to condense in the pump cavity, better corrosion resistance.
8. Compared with oil seal pump, liquid ring pump, there is no waste gas, no waste liquid, no waste oil emission, energy saving and environmental friendly.
It can be used alone or with Roots vacuum pump, air-cooled Roots vacuum pump, molecular vacuum pump, etc. to obtain an oil-free high vacuum system.

The benefit of dry screw vacuum pump compared to liquid ring vacuum pump:

    -Shorten the process cycle and improve production efficiency
    -Reduce water consumption
    -Save energy
    -Improve product quality
    -Can recover solvent by reducing the drying time of products
    -Reduce the cost of wastewater and waste gas treatment

A CASE in a pharmaceutical factory
Process introduction: The penicillin sodium salt solution is fed into the crystallization tank through vacuum. By steam heating, agitator stirring, and adding butanol, the water and butanol in the penicillin solution are pumped into the condenser and condensed into the liquid collecting tank, which can be reused.

Process requirements:
1. The volume of crystallization tank is 7.5m3, and about 4.5m3 penicillin solution is added in the process.
2. Before entering the crystallization tank, the water content of penicillin solution is about 20%, and after crystallization, the water content is required to be about 1%.
3. Vacuum feeding for 2h, then adding butanol for 30min, and then starting to crystallize. The process requires low temperature and fast speed, and the lower the temperature, the better the quality of penicillin. The shorter the reaction time, the better.
4. Vacuum degree requirements: the vacuum degree shall be kept above -0.097MPa. High vacuum degree can reduce the reaction temperature and shorten the reaction time.

The previous vacuum system was 2BE1252+air ejector, which is now transformed into a dry screw vacuum pump. The comparison table of test data is as follows:

vacuum system 2BE1252+ejector DVP 1600 screw pump
Feeding time (h) 2 1.5
Liquid temperature at the beginning of crystallization (ºC) 31.5 16.6
Crystallization time (h) 6 4.5
Time from crystallization to liquid coming out (min) 30 15
Crystal quality average good
Power consumption (KW) 45 37
Water consumption (m3) 26.4 0.72

Economic benefit analysis:

  Cost saving(USD) Remark
Water consumption and treatment 130 Water cost: $0.65/m3, water treatment: 30/m3
Power 15 $0.15/Kwh
Labor, production efficiency 43 Reduced from 6 hour to 4.5 hour
Sum up 188  

Please contact us for a detailed report of economic benefit analysis for your applications! 

 

Configuration
Standard configuration:
Machine base, pump head, coupling, motor, driving screen, air inlet connector, check valve, vacuum gauge, manual filling valve exhaust port muffler.
Optional accessories:
Inlet filter, inlet condenser, solvent flushing device, nitrogen purging device, nitrogen sealing device, exhaust port condenser, solenoid filling valve, cooling water flow switch, temperature sensor, pressure transmitter.

Applications

Leak Detection    Metallurgy  Industrial furnace  Lithium Battery
Chemical, pharmaceutical  Wind tunnel test  Power Industry Vacuum coating
Microelectronics industry Drying Process  Packaging and Printing Solar Energy
Exhaust gas recovery       

Product Parameters

Technical data of Variable pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DVP-180 181 2 4 2900 82 8 50 40 280
DVP-360 354 2 7.5 2900 83 10 50 40 400
DVP-540 535 2 11 2900 83 10 50 40 500
DVP-650 645 1 15 2900 84 20 65 50 600
DVP-800 780 1 22 2900 86 30 100 80 800
DVP-1600 1450 1 37 2900 86 40 125 100 1200

Technical data of Constant pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DSP-140 143 5 4 2900 82 10 50 40 240
DSP-280 278 5 7.5 2900 83 20 50 40 350
DSP-540 521 5 15 2900 83 30 65 50 550
DSP-650 617 5 18.5 2900 84 45 65 50 630
DSP-720 763 5 22 2900 85 55 80 80 780
DSP-1000 912 5 30 2900 86 70 100 80 880

Note: The cooling water volume of the dry screw vacuum pump provided in the table is the amount under 20ºC room temperature water. When the dry screw vacuum pump uses cooling device, the cooling water will be increased, the difference of inlet and outlet water temperature is generally controlled below 7ºC is appropriate.

 

Dimension

 

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Nominal Pumping Speed(50Hz): 354 M3/H
Ultimate Pressure: 5 PA
Nominal Motor Rating(50Hz): 7.5 Kw
Nominal Motor Speed(50Hz): 2900 Rpm

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

What Are the Primary Applications of Vacuum Pumps?

Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Processes:

Vacuum pumps play a vital role in numerous industrial processes, including:

– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.

– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.

– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.

– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.

2. Laboratory and Research:

Vacuum pumps are extensively used in laboratories and research facilities for various applications:

– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.

– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.

– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.

– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.

3. Semiconductor and Electronics Industries:

High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:

– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.

– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.

– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.

4. Medical and Healthcare:

Vacuum pumps have several applications in the medical and healthcare sectors:

– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.

– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.

– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.

5. HVAC and Refrigeration:

Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:

– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.

– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.

6. Power Generation:

Vacuum pumps play a role in power generation applications:

– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.

– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.

These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.

China manufacturer 5 PA 354m3/H 7.5kw Pumping Ethanol Ethyl Alcohol Dry Screw Vacuum Pump   manufacturer China manufacturer 5 PA 354m3/H 7.5kw Pumping Ethanol Ethyl Alcohol Dry Screw Vacuum Pump   manufacturer
editor by CX 2023-12-30

China wholesaler Custom Industrial Boilers CHINAMFG Dry Environmental Product Screw Vacuum Pump vacuum pump adapter

Product Description

Model

LGB-70

LGB-100

LGB-200

LGB-300

Pumping speed(L/3)

70

100

200

300

Ultimate pressure(Pa)

5

5

5

5

rotational speed(rpm)

2900

2940

2940

2950

Connections of inlet  DN(mm)

50

80

100

125

Connections of outle  DN(mm)

45

65

65

80

Noise level dB(A)

≤80

≤80

≤80

≤80

temperature rise(°C)

≤40°C

≤40°C

≤40°C

≤40°C

Pumping size(mm)

1360X960X700

1650X847X933

1740X960X980

2100X1100X1030

Weight (with oil filling) kg

500

665

1571

1300

Motor Power(Kw)

7.5

15

18.5

37

Motor Voltage/motor base frequency(V/Hz)

380/50

380/50

380/50

380/50

Nominal Motor speed (rpm)

2900

2940

2940

2950

Nominal Motor current(A)

14.8

28.8

35.5

67.9

Type of protection(IP)

IP55

IP55

IP55

IP55

1.Q: Are you a factory or trading company?
A: We are a factory and we have professional team of workers,Designers and inspectors.

2.Q:Do you accept custom?
A:Of course.We have professional teams who make your designs,photos,imagines and OEM orders into real production.

3.Q:What’s your advantages?
A: Quick response to your enquiry,
High quality control,
Reasonable price,
Timely delivery,
Excellent after-sales service,
OEM/ODM are welcome

4.Q:What’s your shipping terms?
A:If you need to ship by air,we can use DHL,UPS,FedEx,TNT or EMS.If you need to ship by sea,we have many good forwarders to work with,they can provide the best price for you.
 

After-sales Service: Online Support
Warranty: 1 Year
Oil or Not: Oil
Structure: Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Packaging?

Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

When using vacuum pumps for vacuum packaging, the following steps are typically involved:

1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

How Do You Choose the Right Size Vacuum Pump for a Specific Application?

Choosing the right size vacuum pump for a specific application involves considering several factors to ensure optimal performance and efficiency. Here’s a detailed explanation:

1. Required Vacuum Level: The first consideration is the desired vacuum level for your application. Different applications have varying vacuum level requirements, ranging from low vacuum to high vacuum or even ultra-high vacuum. Determine the specific vacuum level needed, such as microns of mercury (mmHg) or pascals (Pa), and choose a vacuum pump capable of achieving and maintaining that level.

2. Pumping Speed: The pumping speed, also known as the displacement or flow rate, is the volume of gas a vacuum pump can remove from a system per unit of time. It is typically expressed in liters per second (L/s) or cubic feet per minute (CFM). Consider the required pumping speed for your application, which depends on factors such as the volume of the system, the gas load, and the desired evacuation time.

3. Gas Load and Composition: The type and composition of the gas or vapor being pumped play a significant role in selecting the right vacuum pump. Different pumps have varying capabilities and compatibilities with specific gases. Some pumps may be suitable for pumping only non-reactive gases, while others can handle corrosive gases or vapors. Consider the gas load and its potential impact on the pump’s performance and materials of construction.

4. Backing Pump Requirements: In some applications, a vacuum pump may require a backing pump to reach and maintain the desired vacuum level. A backing pump provides a rough vacuum, which is then further processed by the primary vacuum pump. Consider whether your application requires a backing pump and ensure compatibility and proper sizing between the primary pump and the backing pump.

5. System Leakage: Evaluate the potential leakage in your system. If your system has significant leakage, you may need a vacuum pump with a higher pumping speed to compensate for the continuous influx of gas. Additionally, consider the impact of leakage on the required vacuum level and the pump’s ability to maintain it.

6. Power Requirements and Operating Cost: Consider the power requirements of the vacuum pump and ensure that your facility can provide the necessary electrical supply. Additionally, assess the operating cost, including energy consumption and maintenance requirements, to choose a pump that aligns with your budget and operational considerations.

7. Size and Space Constraints: Take into account the physical size of the vacuum pump and whether it can fit within the available space in your facility. Consider factors such as pump dimensions, weight, and the need for any additional accessories or support equipment.

8. Manufacturer’s Recommendations and Expert Advice: Consult the manufacturer’s specifications, guidelines, and recommendations for selecting the right pump for your specific application. Additionally, seek expert advice from vacuum pump specialists or engineers who can provide insights based on their experience and knowledge.

By considering these factors and evaluating the specific requirements of your application, you can select the right size vacuum pump that meets the desired vacuum level, pumping speed, gas compatibility, and other essential criteria. Choosing the appropriate vacuum pump ensures efficient operation, optimal performance, and longevity for your application.

China wholesaler Custom Industrial Boilers CHINAMFG Dry Environmental Product Screw Vacuum Pump   vacuum pump adapter	China wholesaler Custom Industrial Boilers CHINAMFG Dry Environmental Product Screw Vacuum Pump   vacuum pump adapter
editor by CX 2023-11-24

China Best Sales High Quality Acid Chemical Pump Mud Pump Industrial Heavy Duty Slurry Pump Screw Vacuum Pump vacuum pump adapter

Product Description

Company Profile

SHEN LAN  is a foreign trade enterprise in the field of professional and industrial pumps. Established in 2008, our factory has become a famous enterprise in the Chinese market, and our products are exported to Europe, America, Asia and Africa. The high quality of our products has won us high reputation both at home and abroad. The company has core patents, research and development of all kinds of different functions of slurry pump, desulfurization pump, clean water pump, vacuum pump and other products, Our products are applicable in various fields such as labs, chemical, petroleum, papermaking, pharmacy and food industries, and water and electricity factories. According to customers′ different use scenarios to develop technical solutions. Meet any customer needs. The company focuses on product quality, in accordance with the highest standards in the industry to produce, so that customers on quality rest assured, satisfied with the service. As a trustworthy China Supplier, we sincerely hope to cooperate with more friends worldwide.

 

Product Description

 

Material: high chromium alloy
Application: suitable for conveying high concentration slurry with strong abrasion or slurry with low concentration and high lift
Layout: Horizontal
Transmission type: DC Direct drive, Cr parallel belt drive, zvz upper and lower belt drive, CV vertical belt drive, etc.

A-H (R), HH and M (R) series slurry pumps are cantilever and horizontal centrifugal slurry pumps. It is suitable for conveying CHINAMFG or corrosive slurry in metallurgical, mining, coal, electric power, building materials and other industrial departments.
A-H (R) and HH have also become heavy-duty slurry pumps, which are suitable for conveying strong abrasion high concentration slurry or low concentration high lift slurry. Within the allowable range of pressure, this type of pump can also be used in multi-stage series. HH pump is suitable for conveying low concentration high head slurry or high concentration low abrasion high head slurry.

Best Selling Models

Model: 2-1.5B-A-H
Flow: 12-29 m3/h
Head: 6-68 m
Power: 55 kw
Speed: 1200-3800 r/min
Material: High Chrome Alloy
Layout: Horizontal
Useage: it is suitable for conveying high concentration slurry with strong abrasion or slurry with low concentration and high head.
Transfer Method: DC Direct drive, Cr parallel belt drive, zvz upper and lower belt drive, CV vertical belt drive, etc.

Model: 6-4D-A-H
Flow: 162-360 m3/h
Head: 12-56 m
Power: 30 kw
Speed: 800-1550 r/min
Material: High Chrome Alloy
Layout: Horizontal
Useage: it is suitable for conveying high concentration slurry with strong abrasion or slurry with low concentration and high head.
Transfer Method: DC Direct drive, Cr parallel belt drive, zvz upper and lower belt drive, CV vertical belt drive, etc.

Model: 10-8E-A-H
Flow: 540-1440 m3/h
Head: 14-60 m
Power: 15 kw
Speed: 600-1000 r/min
Material: High Chrome Alloy
Layout: Horizontal
Useage: it is suitable for conveying high concentration slurry with strong abrasion or slurry with low concentration and high head.
Transfer Method: DC Direct drive, Cr parallel belt drive, zvz upper and lower belt drive, CV vertical belt drive, etc.

 

AH Series Type Info (for initial selection only)
 

TYPE Allowable Mating Max. Power(KW) Material Clear Water Performance Impeller
Liner Impel Capacity   Q   Head H
(m)
Speed N
(r/min) 
Max. Eff(%)  NPSH
(m)  
No. of Vanes S Dia.(mm)
M³/h l/s
1.5/1B-AH 15 M M 12.6-28.8 3.5-8 6-68 1200-3800 40 2-4 5 152
2/1.5B-AH 15 M M 32.4-72 9-20 6-58 1200-3200 45 3.5-8 5 184
3/2C-AH 30 M M 39.6-86.4 11-24 12-64 1300-2700 55 4-6 5 214
4/3C-AH 30 M M 86.4-198 24-55 9-52 1000-2200 71 4-6 5 245
6/4D-AH 60 M M 162-360 45-100 12-56 800-1550 65 5-8 5 365
8/6R-AH 300 M M 360-828 100-230 10-61 500-1140 72 2-9 5 510
10/8E-M 120 M M 666-1440 185-400 14-60 600-1100 73 4-10 5 549
10/8ST-AH 560 M M 612-1368 170-380 11-61 400-850 71 4-10 5 686
12/10ST-AH 560 M M 936-1980 260-550 7-68 300-800 82 6 5 762
14/12ST-AH 560 M M 1260-2772 350-770 13-63 300-600 77 3-10 5 965
16/14TU-AH 1200 M M 1368-3060 380-850 11-63 250-550 79 4-10 5 1067
20/18TU-AH 1200 M M 2520-5400 700-1500 13-57 200-400 85 5-10 5 1370
 Note:   1.”M”Stands for Alloy wear-resistant material; “R” stands for rubber
        2.Capacity range recommend 50%Q’≤Q≤110%Q’ (Q’≈Appropriate capacity at highest efficiency point)
        3.NPSH is the value at the Q point with highest speed .

 

 

FAQ

Q1. Are you a manufacturer?

Yes, we have been in centrifugal pumps manufacturing and marketing industry over  20 years.
 
Q2. What markets do your pumps export to?
Europe, North & South America, South-East Asia, Africa, Oceanica, Middle East countries. Our overseas agent in Italy, Russia, America and Africa are gradually improving.
 
Q3. What information should I let you know if I want to get a quotation?
Please let us know the pump capacity, head, medium, operation situation, quantity, etc. As much as your provide, the precision and accurate model selection.
 
Q4. Is it available to print our own brand on the pump?
Totally acceptable as international rules.
 
Q5. How can I get the price of your pump?
You can connect with us through any of the following contact information. Our personalized service person will respond you within 24 hours.

 

 

contact-info.html

After-sales Service: Anytime
Warranty: One Year
Influent Type of Impeller: Single Suction Pump
Position of Pump Shaft: Horizontal Pump
Pump Casing Combined: Horizontal Split Pumps
Mounting Height: Suction Centrifugal
Samples:
US$ 5000/Set
1 Set(Min.Order)

|

Customization:
Available

|

vacuum pump

What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?

The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:

Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).

Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:

1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.

2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.

3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.

4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.

5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.

It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.

In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.

\vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China Best Sales High Quality Acid Chemical Pump Mud Pump Industrial Heavy Duty Slurry Pump Screw Vacuum Pump   vacuum pump adapter	China Best Sales High Quality Acid Chemical Pump Mud Pump Industrial Heavy Duty Slurry Pump Screw Vacuum Pump   vacuum pump adapter
editor by CX 2023-11-23

China wholesaler Roots Vacuum Pump with Compressor, Screw Pumps, Oil-Less Piston, Rotary Vane Oil Free with high quality

Product Description

 

Product Description

Roots pump is a kind of vacuum pump without internal compression. It is a vacuum pump that realizes air extraction by moving gas under the pushing action of synchronous and reverse rotation of a pair of “8” shaped rotors in the pump cavity. Generally, the pumping rate is large and the power of the motor is small, so the front pump is required to pre pump. After the front pump reaches the specified vacuum degree, start the roots vacuum pump to improve the pumping speed and vacuum degree. Its structure and working principle are similar to roots blower. During operation, its suction is connected with the evacuated container or the main pump of vacuum system. There is no contact between rotors of Roots vacuum pump and between rotors and pump casing.

Our Advantages

The running parts in the pump have no friction, no lubrication, and there is no oil in the pump cavity, so a clean vacuum can be obtained.

two leaf involute cycloid profile, high-precision machining to ensure smooth and quiet operation.

the gas in the pump chamber flows vertically, which is conducive to the discharge of dust and condensate in the pumped gas.

. The high-strength rotor with complete symmetry and precise dynamic balance operates stably and reliably.

high precision gear, imported bearing, low vibration and noise.

the new omni-directional three-dimensional water-cooling jacket design can effectively cool the pump body and greatly prolong the service life of the pump.

the overflow surface can be plated with shackles, Hastelloy and PTFE, which can adapt to corrosive environments with different strengths.

it is convenient to form roots vacuum unit with liquid ring vacuum pump, rotary vane vacuum pump and dry vacuum pump.

 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Product Parameters

Type Pumping Speed L/S Maximum allowable differential pressure (Pa) Pump Speed(RPM) Inlet Diameter(mm) Outlet Diameter(mm) Motor Power(kw)
ZJB-70 70 8000 2850 80 50 1.5
ZJB-150 150 6000 2850 100 80 3
ZJB-300 300 5000 2900 150 100 4
ZJB-600 600 4000 2900 200 150 5.5Z7.5
ZJ-1200 1200 3000 2900 250 200 11/15
ZJ-2500 2500 2600 2900 300 250 22
ZJ-3750 3750 2600 1450 350 350 30
ZJ-5000 5000 2600 1450 400 400 45

 

 

Detailed Photos

Vacuum pump is used in the field of chemical and pharmaceutical factory

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

Product quality wins consumer cooperationIn shipmentISO 9001High tech enterprise certificate

 

Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Customization:
Available

|

roots vacuum pump

How Do You Select the Right Size Roots Vacuum Pump for a Specific Application?

Selecting the right size Roots vacuum pump for a specific application requires careful consideration of various factors. Here’s a detailed explanation:

1. Determine the Required Pumping Speed: The pumping speed is a crucial parameter that indicates the volume flow rate of gas that the Roots vacuum pump can handle. To select the right size pump, you need to determine the required pumping speed for your application. Consider factors such as the volume of the system being evacuated, the gas load, and the desired evacuation time. The required pumping speed will help narrow down the options and identify pumps that can meet your application’s demands.

2. Consider the Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that the Roots vacuum pump can achieve under ideal conditions. Different applications have varying vacuum level requirements. Determine the desired ultimate vacuum level for your application, keeping in mind factors such as the sensitivity of the process, the presence of moisture or contaminants, and the specific requirements of the downstream equipment or processes. Ensure that the selected pump can reach the required vacuum level.

3. Evaluate Gas Composition and Characteristics: The composition and characteristics of the gas being pumped are essential considerations. Some gases, such as condensable vapors or corrosive gases, may require special pump features or materials to ensure efficient and safe operation. Consider the gas composition, including its chemical properties, temperature, and any potential challenges it may pose to the pump’s performance or longevity. Consult the pump manufacturer or specialist for guidance on selecting a pump suitable for handling the specific gas or gas mixture in your application.

4. Account for System Constraints and Operating Conditions: Assess the system constraints and operating conditions that may impact the pump’s performance. Factors such as the available space for the pump, power supply requirements, cooling options, and noise limitations should be taken into consideration. Additionally, consider any specific operating conditions such as temperature extremes, high-altitude operation, or continuous-duty requirements. Ensure that the selected pump is compatible with the system constraints and can operate reliably under the anticipated operating conditions.

5. Consult Manufacturer Specifications and Performance Curves: Review the manufacturer’s specifications and performance curves for the Roots vacuum pumps under consideration. These documents provide detailed information about the pump’s capabilities, operating ranges, and performance characteristics. Pay attention to parameters such as pumping speed, ultimate vacuum level, power requirements, and any specific features or limitations. Compare the specifications with your application requirements to identify pumps that align with your needs.

6. Seek Expert Advice: If you are unsure about the pump selection process or have complex application requirements, it is recommended to seek advice from pump manufacturers or specialists. They can provide valuable insights, recommend suitable pump models, and assist in evaluating your specific application needs.

7. Consider Future Expansion and Flexibility: When selecting a Roots vacuum pump, consider the potential for future expansion or changes in your application. If there is a possibility of increased gas load or system requirements in the future, it may be advantageous to select a slightly larger pump to accommodate potential growth and ensure long-term suitability.

In summary, selecting the right size Roots vacuum pump involves determining the required pumping speed, considering the ultimate vacuum level, evaluating gas composition and characteristics, accounting for system constraints and operating conditions, consulting manufacturer specifications, and seeking expert advice when needed. By carefully considering these factors, you can choose a Roots vacuum pump that meets the specific requirements of your application, ensuring efficient and reliable operation.

roots vacuum pump

What Is a Roots Vacuum Pump, and How Does It Work?

A Roots vacuum pump, also known as a Roots blower or a rotary lobe pump, is a type of positive displacement vacuum pump that is widely used for various industrial applications. Here’s a detailed explanation of what a Roots vacuum pump is and how it works:

A Roots vacuum pump consists of two synchronized rotors, known as lobes or impellers, that rotate in opposite directions within a housing. The lobes have a unique helical shape with multiple lobes, which allows them to trap and move gas efficiently. The rotors are synchronized with the help of timing gears to maintain precise clearances between the lobes and the housing.

The operation of a Roots vacuum pump can be described in the following steps:

1. Inlet Stage: The process begins with the lobes rotating in opposite directions. As the lobes rotate, the volume between them and the housing gradually increases, creating a larger space at the inlet side of the pump. This expansion of the volume causes the gas to enter the pump through the inlet port. The gas is drawn in due to the pressure difference between the inlet and the pump’s internal chamber.

2. Compression Stage: As the gas enters the pump, it gets trapped in the spaces between the lobes and the housing. As the lobes continue to rotate, the trapped gas gets carried along the rotating lobes. The gas is essentially trapped in the pockets formed by the lobes and the housing. The rotating lobes then compress the gas as they move towards the outlet side of the pump.

3. Outlet Stage: As the lobes approach the outlet side of the pump, the volume between them and the housing decreases, resulting in the compression of the trapped gas. This compression raises the pressure of the gas, causing it to be expelled through the outlet port of the pump. The expelled gas is then discharged into the atmosphere or directed to a downstream process or another vacuum pump, depending on the application.

It’s important to note that a Roots vacuum pump operates as a non-contacting pump, meaning that there is no physical contact between the lobes or between the lobes and the housing. This characteristic eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system.

Roots vacuum pumps are known for their high pumping speed and ability to handle large volumes of gas. However, they are not capable of achieving high vacuum levels on their own. To achieve higher vacuum levels, a Roots pump is often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in a hybrid or combination pumping system.

In summary, a Roots vacuum pump operates based on the principle of positive displacement. It utilizes synchronized rotating lobes to trap and compress gas, allowing it to be discharged at a higher pressure. The non-contacting design of the pump eliminates the need for lubrication and reduces the risk of contamination. Roots vacuum pumps are commonly employed in various industrial applications, especially when high pumping speed and large gas handling capacity are required.

China wholesaler Roots Vacuum Pump with Compressor, Screw Pumps, Oil-Less Piston, Rotary Vane Oil Free   with high quality China wholesaler Roots Vacuum Pump with Compressor, Screw Pumps, Oil-Less Piston, Rotary Vane Oil Free   with high quality
editor by CX 2023-11-16

China high quality Screw Vacuum Pump Centrifugal Chemical Electrolyte Solution Pump vacuum pump brakes

Product Description

HIGH EFFICIENCY INDUSTRIAL ELECTRIC SLURRY PUMPS FOR MINING

Product Description

 

OVERVIEW

The new wear-resistant corundum-lined slurry pump is an innovative product independently designed and developed by our company in order to meet the requirements of users and adapt to the working conditions of conveying strong corrosion and high wear media. The flow parts are all made of wear-resistant corundum material, which has the characteristics of wear resistance and corrosion resistance, high efficiency and energy saving, stable operation and convenient maintenance.

ZMJ HEAVY DUTY SLURRY PUMP
 

ZMJ slurry pump is our company developed energy-efficient, single-stage, single-suction centrifugal slurry pumps. Form of the structureis divided into horizontal (ZXJ series) and vertical (ZFJ series). Divided by horizontal pump outlet diameter 350mm, 300mm, 250mm, 200mm, 150mm, 100mm, 80mm, 65mm, 50mm, 40mm, and other specifications. Vertical pump outlet diameter divided by 250mm, 200mm, 150mm, 100mm, 80mm, 65mm, 50mm, 40mm,and other specifications.

 

ZMJ SLURRY PUMP STRUCTURE

Product Parameters

 

TYPE CLEAR WATER PERFORMANCE PARTICLE MAX SIXE HANDLED OCCASIONALLY
(mm)
WEIGHT
(kg)
MAX MOTOR
(kw)
CAPACITY
(m³/h)
HEAD
(m)
SPEED
(r/min)
MAX.EFF
(%)
250ZMJ-65 185 200-1211 11-33.1 730 68 30 4240
150ZMJ-60 185 180-630 7.2-54.7 730-980 73 26 3330
150ZMJ-50 55 121-350 12.3-24 590-730 75 20 1200
150ZMJ-35 37 99-364 3.0-17.9 490-980 69 15 800
100ZMJ-34 45 74-293 5.5-36.8 700-1480 65.1 10 630
80ZMJ-36 45 50-201 73.5-45.5 700-1480 58.2 10 65
65ZMJ-30 18.5 18-98 5.9-34.7 700-1470 53.7 8 440
50ZMJ-20 4 8-38 1.4-10.7 700-1440 38.6 10 24
40ZMJ-B25 4 4.9-22.9 4.0-21.5 700-1440 37.6 8 225

OTHER SPECIFICATIONS WELCOME TO COMMUNICATE WITH US IN DETAIL!

 

SPARE PARTS

Our Advantages

Packaging & Shipping

 

 

STHangZhouRD WOODEN BOX PACKAGE

 

Company Profile

 

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2014,sell to North America(30.00%),South Asia(10.00%),South America(10.00%),Eastern Asia(10.00%),Mid East(10.00%),Southeast Asia(10.00%),Africa(9.00%),Oceania(8.00%),Western Europe(2.00%),Domestic Market(1.00%).

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
ICJ standard chemical pump, IZA chemical process pump, ICZ chemical process pump, ICPD multi-stage centrifugal Heart pump, 2BE1 vacuum pump, QS large submersible pump, ZMJ slurry pump, TLB desulfurization pump, ZXB self-priming pump, ICY submerged pump, OSJ split pump and ICF fluorine-lined pump.

4. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,FAS,CIP,FCA,CPT,DEQ,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,JPY,CAD,AUD,HKD,GBP,CNY,CHF;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese,Russian

 

In order to ensure the fastest feedback and correct quotation for you, we need to know the following information:

1. Inlet diameter

2. Outlet diameter

3. Working conditions

4. Head(m)

5. Particle size & content

6. pH

WELCOME TO INQUIRY!

After-sales Service: Provided
Warranty: 12 Months
Max.Head: 110m-150m
Max.Capacity: 50-100 L/min
Driving Type: Motor
Impeller Number: Multistage Pump
Samples:
US$ 727/Set
1 Set(Min.Order)

|

Customization:
Available

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

What Is the Purpose of a Vacuum Pump in an HVAC System?

In an HVAC (Heating, Ventilation, and Air Conditioning) system, a vacuum pump serves a crucial purpose. Here’s a detailed explanation:

The purpose of a vacuum pump in an HVAC system is to remove air and moisture from the refrigerant lines and the system itself. HVAC systems, particularly those that rely on refrigeration, operate under specific pressure and temperature conditions to facilitate the transfer of heat. To ensure optimal performance and efficiency, it is essential to evacuate any non-condensable gases, air, and moisture from the system.

Here are the key reasons why a vacuum pump is used in an HVAC system:

1. Removing Moisture: Moisture can be present within an HVAC system due to various factors, such as system installation, leaks, or improper maintenance. When moisture combines with the refrigerant, it can cause issues like ice formation, reduced system efficiency, and potential damage to system components. A vacuum pump helps remove moisture by creating a low-pressure environment, which causes the moisture to boil and turn into vapor, effectively evacuating it from the system.

2. Eliminating Air and Non-Condensable Gases: Air and non-condensable gases, such as nitrogen or oxygen, can enter an HVAC system during installation, repair, or through leaks. These gases can hinder the refrigeration process, affect heat transfer, and decrease system performance. By using a vacuum pump, technicians can evacuate the air and non-condensable gases, ensuring that the system operates with the designed refrigerant and pressure levels.

3. Preparing for Refrigerant Charging: Prior to charging the HVAC system with refrigerant, it is crucial to create a vacuum to remove any contaminants and ensure the system is clean and ready for optimal refrigerant circulation. By evacuating the system with a vacuum pump, technicians ensure that the refrigerant enters a clean and controlled environment, reducing the risk of system malfunctions and improving overall efficiency.

4. Leak Detection: Vacuum pumps are also used in HVAC systems for leak detection purposes. After evacuating the system, technicians can monitor the pressure to check if it holds steady. A significant drop in pressure indicates the presence of leaks, enabling technicians to identify and repair them before charging the system with refrigerant.

In summary, a vacuum pump plays a vital role in an HVAC system by removing moisture, eliminating air and non-condensable gases, preparing the system for refrigerant charging, and aiding in leak detection. These functions help ensure optimal system performance, energy efficiency, and longevity, while also reducing the risk of system malfunctions and damage.

China high quality Screw Vacuum Pump Centrifugal Chemical Electrolyte Solution Pump   vacuum pump brakesChina high quality Screw Vacuum Pump Centrifugal Chemical Electrolyte Solution Pump   vacuum pump brakes
editor by CX 2023-10-27

China Hot selling Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney Klrc Kt Kmbd vacuum pump and compressor

Product Description

Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney KLRC KT KMBD

Product Description

KT Single-Stage Rotary Piston Vacuum Pump

 

 

 

• High pumping capacity at high and low pressures
Three-cylinder piston design: dynamic balance, almost no vibration
• No metal contact between pump pistons
The cylinder clearance is full of oil
• Quiet operation

Application: 

 Heat Treating, Coating, Transformer Drying, Metallurgy, Vacuum packaging, Vacuum furnace, Vacuum coating, Liquid Gas Storage, Brake Fluid Filling, Silicon Crystal Growing, Evacuation

 

Model CFM m3/h HP/kW
KT-150 150/244 7.5/5.5
KT-300 300/503 15/11

 

KLRC Two-stage water-ring vacuum pump

 
Drop down to 4 Torr (5.3 mbar a)
• Low-pressure performance limited by steam. The pressure of sealing liquid: water, oil, or process liquid
• Provide complete engineering system solutions: Instruments, controls, piping, and valves
• Independent liquid recovery and recycling
• The central anchor rod is allowed to enter. Pump end without complete disassembly
• KLRC75 provides dual mechanical seals
Through KLRC525, to meet the requirements of the API pipeline plan.

Applications:
Chemical & Pharmaceutical Processing, Vapor Recovery, Deaeration, Extruders, Crystallizers, Central Vacuum Systems

Model CFM / m3/hr CFM / m3/hr
KLRC-125 71/99 5/3.7
KLRC-200 170/244 15/11
KLRC-300 305/432 25/18.5
KLRC-525 550/779 50/37
Roots pump  
• High volume of gas at high vacuum (50 Torr to micrometer range)
• Can be used with all types of vacuum pumps
• Designed to operate in a blank state of 82 dB (A) or less open ground; except for motor and background noise
• Heavy-duty drive shafts for direct coupling or Belt Drive Applications
• Standard building material: cast iron end plate, the fit of housing and port with nodular cast iron rotor and shaft
• Special materials provided
» Stainless steel, carbon steel, ductile iron, Bi Protec
• Special tests available
» Hydrostatic test to 150 PSIG (10.35 bar g), seal leak test, noise test

Application: 
Supercharging ( Vacuum Systems), Vacuum Drying, Dehydration, Packaging, Distillation  Vacuum Furnace

 

Single Stage Rotary Vane Pump  
• Vacuum packaging and food processing technology
Thermoforming, blister, air compression, foam forming
• Vacuum Adsorption, sling
• Vacuum degassing, drying, crystallization, impregnationprecooling
• Vacuum pressing, laminating, setting
• Vacuum coating and industrial CHINAMFG as the front pump and pre-pump two

 

Two Stage Rotary Vane Pump  
• Electronics, semiconductor, and coating industries Vacuum oven, sapphire furnace, polycrystalline furnace, single crystal furnace, vacuum dewatering furnace, vacuum sintering furnace, etc.; Optical coating, ion plating, sputtering equipment; Plasma cleaning; As the front auxiliary pump of Roots pump, diffusion pump, molecular pump, etc.
• Various analytical instruments Spectrometer, spectrometer, physical and chemical analyzer, leak detector, glove box, etc.
• Medical Industry
Plasma sterilizer, vacuum CHINAMFG drying, etc.
• Refrigeration industry
Automatic evacuation lines of air conditioners, refrigerators, and compressors, refrigerant injection machines, helium leak detection series, etc

Comparison of replacement models

Our Model

Kinney’s Model

 

Our Model

Kinney’s Model

TWO STAGE WATER-RING VACUUM PUMP

SINGLE STAGE ROTARY PISTON VACUUM PUMP

LP40

KLRC100

PP70

KT150

LP55

KLRC125

PP150

KT300

LP75

KLRC200

PP70B

KT150(here are differenets from shape and oil channel design)

LP115

KLRC300

ROOTS PUMP

LP200

KLRC525

VP200

KMBD540

 

 

VP600

KMBD2000

Company Profile

The main products are water ring vacuum pumps (including 2BV series, 2BE1 series, 2BE3 series, 2SK series, SK series), rotary vane vacuum pumps (2X series, XD series), roots vacuum pumps, screw vacuum pumps, reciprocating vacuum pumps, vacuum pump stations, vacuum units and accessories, vacuum complete equipment, etc. According to different types of vacuum pumps and different production process requirements of customers, there are also many kinds of materials, mainly including cast iron, stainless steel 304, stainless steel 316, stainless steel 316L, etc. The material quality of non proud products is guaranteed. If the product has quality problems, it will be replaced within 3 months and guaranteed for 1 year. 1. Special materials, specifications and requirements can be customized through negotiation between the supplier and the demander. 2. Provide design, processing, sales and maintenance of vacuum units and complete vacuum equipment. 3. The price will fluctuate due to different product requirements, specifications and materials. The above prices are only for reference. We will provide a suitable design scheme and quotation for your vacuum system according to your specific requirements,

After-sales Service: 5 Years
Warranty: 5 Years
Oil or Not: Optional
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|

roots vacuum pump

How Do Roots Vacuum Pumps Affect the Efficiency of Vacuum Systems in Various Industries?

Roots vacuum pumps have a significant impact on the efficiency of vacuum systems across various industries. Here’s a detailed explanation:

1. Enhanced Vacuum Level:

– High Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can evacuate gas from a system. By quickly removing gas molecules, these pumps help achieve and maintain a lower pressure, resulting in an enhanced vacuum level within the system. This increased vacuum level is crucial in industries such as semiconductor manufacturing, where precise control of pressure is necessary for optimal processing conditions.

– Improved Evacuation Time: With their rapid gas pumping capability, Roots vacuum pumps significantly reduce the evacuation time required to reach the desired vacuum level. This efficiency is particularly important in industries where time-sensitive processes are involved, such as vacuum drying, degassing, or impregnation, allowing for faster production cycles and increased productivity.

2. Increased Throughput:

– Continuous Operation: Roots vacuum pumps are designed for continuous operation, enabling uninterrupted gas removal from the vacuum system. Their robust construction and oil-free operation make them reliable and suitable for demanding industrial applications. The ability to maintain a consistent vacuum level without frequent stops or downtime contributes to increased system throughput and overall efficiency.

– Handling Large Volumes: Roots pumps are capable of handling large gas volumes due to their displacement principle. This makes them well-suited for industries that require the evacuation of substantial amounts of gas, such as in chemical processing, pharmaceutical manufacturing, or vacuum packaging. By efficiently evacuating large volumes of gas, Roots vacuum pumps facilitate higher production rates and improved process efficiency.

3. Improved Process Control:

– Stable Vacuum Level: Roots vacuum pumps help maintain a stable vacuum level within the system, which is essential for precise process control. By swiftly removing gas molecules, these pumps prevent pressure fluctuations and ensure a consistent environment for various manufacturing processes. This is particularly crucial in industries like thin film deposition, where maintaining a stable vacuum is crucial for achieving uniform coating thickness and quality.

– Reduced Contamination: Roots vacuum pumps operate without lubricating oil in the pumping chamber, minimizing the risk of oil contamination in the vacuum system. This is particularly advantageous in industries such as electronics, semiconductor fabrication, or research laboratories, where even trace amounts of contaminants can adversely affect product quality or experimental results. By providing clean and oil-free vacuum, Roots pumps contribute to improved process control, reduced yield loss, and enhanced product reliability.

4. Energy Efficiency:

– Lower Power Consumption: Roots vacuum pumps are designed to operate efficiently, consuming lower power compared to other types of vacuum pumps. This energy efficiency is beneficial in industries where vacuum systems are continuously operated, such as in chemical processing plants or industrial manufacturing facilities. By reducing power consumption, Roots pumps help lower operational costs and contribute to sustainable and environmentally friendly practices.

– Heat Dissipation: Roots pumps generate less heat during operation compared to certain other vacuum pump types. This is advantageous in industries where temperature control is critical, such as in semiconductor fabrication or vacuum furnaces. The reduced heat generation minimizes the need for additional cooling measures, improving overall energy efficiency and reducing operational costs.

In summary, Roots vacuum pumps significantly impact the efficiency of vacuum systems in various industries. They enhance the vacuum level, increase system throughput, improve process control, and contribute to energy savings. By providing high pumping speed, quick evacuation time, continuous operation, stable vacuum levels, reduced contamination risk, lower power consumption, and efficient heat dissipation, Roots vacuum pumps play a crucial role in optimizing the performance and productivity of vacuum systems across industries.

roots vacuum pump

How Do Roots Vacuum Pumps Differ from Other Types of Vacuum Pumps?

Roots vacuum pumps, also known as Roots blowers or rotary lobe pumps, have distinct characteristics that set them apart from other types of vacuum pumps. Here’s a detailed explanation of the differences between Roots vacuum pumps and other common types of vacuum pumps:

1. Operating Principle: Roots vacuum pumps operate based on the principle of positive displacement. They use synchronized rotating lobes to trap and compress gas, resulting in the creation of a pressure differential that generates vacuum. Other types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, and diffusion pumps, operate on different principles, such as rotor rotation, liquid sealing, or molecular diffusion.

2. Pumping Mechanism: Roots vacuum pumps are non-contacting pumps, meaning there is no physical contact between the lobes or between the lobes and the housing. This eliminates the need for lubrication within the pump and reduces the risk of contamination or oil vapor backstreaming into the vacuum system. In contrast, many other types of vacuum pumps rely on a sealing mechanism that involves physical contact between moving parts, requiring lubrication to maintain proper operation.

3. Pumping Speed: Roots vacuum pumps are known for their high pumping speed, which refers to the rate at which they can remove gas from a vacuum system. They excel at handling large volumes of gas efficiently. This makes Roots vacuum pumps suitable for applications that require rapid evacuation or continuous extraction of gases. Other types of vacuum pumps may have different pumping speeds depending on their design and intended applications.

4. Vacuum Level: While Roots vacuum pumps are efficient at generating rough vacuum levels, typically in the range of 10 to 1,000 mbar, they are not capable of achieving high vacuum levels on their own. They are often used in conjunction with other vacuum pumps, such as rotary vane pumps or diffusion pumps, in hybrid or combination pumping systems to achieve higher vacuum levels. In contrast, other types of vacuum pumps, such as turbomolecular pumps or cryogenic pumps, are designed specifically for achieving and maintaining high vacuum levels.

5. Gas Handling: Roots vacuum pumps have a large gas handling capacity and can handle a wide range of gases, including clean air, corrosive gases, and vapors. Their robust construction and ability to handle gas with particulates or liquids make them suitable for applications in various industries. Other types of vacuum pumps may have limitations in terms of the types of gases they can handle or may require additional equipment or treatments to handle specific gases.

6. Applications: Roots vacuum pumps find applications in a wide range of industrial processes, including chemical processing, pharmaceuticals, food processing, environmental technology, semiconductor manufacturing, packaging, and research laboratories. Other types of vacuum pumps, such as turbomolecular pumps, cryogenic pumps, or scroll pumps, may be more commonly used in specific industries or applications where their unique operating principles or capabilities are advantageous.

It’s important to note that the selection of a vacuum pump depends on various factors, including the desired vacuum level, gas composition, pumping speed requirements, application-specific considerations, and budget constraints. Different types of vacuum pumps offer distinct advantages and are chosen based on the specific requirements of the application.

In summary, Roots vacuum pumps differ from other types of vacuum pumps in terms of their operating principle, pumping mechanism, pumping speed, vacuum level capabilities, gas handling capacity, and applications. Understanding these differences helps in selecting the most suitable vacuum pump for a particular industrial process or application.

China Hot selling Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney Klrc Kt Kmbd   vacuum pump and compressor	China Hot selling Single Double Stage Industrial AC DC Liquid Water Cooling Ring Piston Rotary Vane Dry Screw Scroll Roots Air Vakuum Vacuum Pump Replace of Kinney Klrc Kt Kmbd   vacuum pump and compressor
editor by CX 2023-10-26